Let A be a formula without implications, and Γ consist of formulas containing disjunction and falsity only negatively and implication only positively. Orevkov and Nadathur proved that classical derivability of A from Γ implies intuitionistic derivability, by a transformation of derivations in sequent calculi. We give a new proof of this result , where the input data are natural deduction proofs in long normal form involving stability axioms for relations; the proof gives a quadratic algorithm to remove the stability axioms. (...) This can be of interest for computational uses of classical proofs. (shrink)
The paper presents a refined method of extracting reasonable and sometimes unexpected programs from classical proofs of formulas of the form ∀x∃yB . We also generalize previously known results, since B no longer needs to be quantifier-free, but only has to belong to a strictly larger class of so-called “goal formulas”. Furthermore we allow unproven lemmas D in the proof of ∀x∃yB , where D is a so-called “definite” formula.
This paper describes formalizations of Tait's normalization proof for the simply typed λ-calculus in the proof assistants Minlog, Coq and Isabelle/HOL. From the formal proofs programs are machine-extracted that implement variants of the well-known normalization-by-evaluation algorithm. The case study is used to test and compare the program extraction machineries of the three proof assistants in a non-trivial setting.
From a classical proof that the gcd of natural numbers a1 and a2 is a linear combination of the two, we extract by Gödel's Dialectica interpretation an algorithm computing the coefficients. The proof uses the minimum principle. We show generally how well-founded recursion can be used to Dialectica interpret well-founded induction, which is needed in the proof of the minimum principle. In the special case of the example above it turns out that we obtain a reasonable extracted term, representing an (...) algorithm close to Euclid's. (shrink)
Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are (...) used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic. (shrink)
It is shown how to restrict recursion on notation in all finite types so as to characterize the polynomial-time computable functions. The restrictions are obtained by using a ramified type structure, and by adding linear concepts to the lambda calculus.
Buchholz presented a method to build notation systems for infinite sequent-style derivations, analogous to well-known systems of notation for ordinals. The essential feature is that from a notation one can read off by a primitive recursive function its n th predecessor and, e.g. the last rule applied. Here we extend the method to the more general setting of infinite terms, in order to make it applicable in other proof-theoretic contexts as well as in recursion theory. As examples, we use the (...) method to 1. give a new proof of a well-known trade-off theorem , which says that detours through higher types can be eliminated by the use of transfinite recursion along higher ordinals, and 2. construct a continuous normalization operator with an explicit modulus of continuity. (shrink)
Several properties of monotone functionals (MF) and monotone majorizable functionals (MMF) used in the earlier work by the author and van de Pol are proved. It turns out that the terms of the simply typed lambda-calculus define MF, but adding primitive recursion, and even monotonic primitive recursion changes the situation: already Z.Z(1 — sg) is not MMF. It is proved that extensionality is not Dialectica-realizable by MMF, and a simple example of a MF which is not hereditarily majorizable is given.