17 found
Order:
  1.  3
    Eine wissenschaftstheoretische Analyse des Leibniz'schen calculus — das Beispiel des Krümmungsradius.Horst Struve & Ingo Witzke - 2008 - Studia Leibnitiana 40 (1):29 - 47.
    Leibniz is one of the founders of calculus, a starting point of modern mathematics. A crucial point in the understanding of Leibniz' calculus is the concept of differential, especially differential of higher order. In this article we discuss the first successful application of differentials of higher order, namely the determination of the radius of curvature. 1692 Jakob Bernoulli determined three formulas for this radius. Leibniz was not satisfied with the proofs of Bernoulli and published two years later a new elegant (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  2.  15
    Die Prüfbarkeit Empirischer Theorien.Horst Struve - 1987 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 18 (1-2):313-315.
    Are empirical theories empirically testable? In this article Theoretische Begriffe und die Prüfbarkeit von Theorien V. Gadenne comes to the conclusion that theories are testable. On this basis he criticizes the non-statement view which asserts the contrary. It is shown that this criticism, however, is erroneous.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  30
    Eine Synthetische Charakterisierung der Cayley-Kleinschen Geometrien.Horst Struve & Rolf Struve - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (35-36):569-573.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4.  11
    Empirische Geometrie.Horst Struve - 1989 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 20 (2):325-339.
    A main subject of philosophy of science is the reconstruction of scientific theories. Not only scientists are holding theories but everybody else, namely theories about everyday knowledge. In this article two geometric theories of this kind are reconstructed. The reconstruction is performed under the structuralist view of theories. It turns out that there are important differences between scientific theories and everyday theories, concerning the intended applications as well as the logical status of the concepts.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  7
    Die Integralrechnung von Leibniz – eine Rekonstruktion.Hans Joachim Burscheid & Horst Struve - 2002 - Studia Leibnitiana 34 (2):127 - 160.
    For an appropriate understanding of Leibniz's calculus the concept of differential is a crucial one. In Die Differentialrechnung nach Leibniz -eine Rekonstruktion (published in this journal in 2001) the calculus differentialis of Leibniz was analysed. In this paper we deal with the first systematic formulation of the calculus integralis, the Lectiones mathematicae de methodo integralium aliisque of Johann Bernoulli from 1691/92. It will be pointed out that Leibniz's theory is consistent and can be reconstructed as an empirical theory within the (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  6.  7
    Die Differentialrechnung nach Leibniz - eine Rekonstruktion.Hans Joachim Burscheid & Horst Struve - 2001 - Studia Leibnitiana 33 (2):163 - 193.
    In the history of mathematics Leibniz as one of the scientists who developed the calculus of differentials has an outstanding position. However, it is difficult to reconstruct his theory in a consistent way. The main problem is the concept of differential. For an adequate understanding of this concept it is necessary to analyze how it is used. In this article we deal with the first systematic formulation of Leibniz' calculus, the Lectiones de calculo differentialium of Johann Bernoulli from 1691/92. It (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  7.  23
    Zum Begriff Der Projektiv-Metrischen Ebene.Horst Struve & Rolf Struve - 1988 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34 (1):79-88.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. Leibniz Als Wahrscheinlichkeitstheoretiker.Horst Struve & Rolf Struve - 1997 - Studia Leibnitiana 29 (1):112-122.
    Leibniz was an outstanding mathematician of the 17th century and one of the most original philosophers of European history. Against this background it is astonishing that the ideas of Leibniz concerning probability have to date not been appreciated by mathematicians and philosophers. In this article the most important work of Leibniz with respect to probability theory, his De incerti aestimatione , is analysed. Here Leibniz deals with the 'problem of points', the then famous problem as to how to divide justly (...)
     
    Export citation  
     
    Bookmark   1 citation  
  9.  15
    Affine Ebenen MIT Orthogonalitätsrelation.Horst Struve - 1984 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 30 (13-16):223-231.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  1
    Empirische Geometrie.Horst Struve - 1989 - Zeitschrift Für Allgemeine Wissenschaftstheorie 20 (2):325-339.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  11.  1
    Die Prüfbarkeit Empirischer Theorien.Horst Struve - 1987 - Zeitschrift Für Allgemeine Wissenschaftstheorie 18 (1-2):313-315.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  12.  13
    Berkeleys Kritik Am Leibniz´Schen Calculus.Horst Struve, Eva Müller-Hill & Ingo Witzke - 2015 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 46 (1):63-82.
    One of the most famous critiques of the Leibnitian calculus is contained in the essay “The Analyst” written by George Berkeley in 1734. His key argument is those on compensating errors. In this article, we reconstruct Berkeley's argument from a systematical point of view showing that the argument is neither circular nor trivial, as some modern historians think. In spite of this well-founded argument, the critique of Berkeley is with respect to the calculus not a fundamental one. Nevertheless, it highlights (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  9
    Eine Synthetische Charakterisierung der Cayley‐Kleinschen Geometrien.Horst Struve & Rolf Struve - 1985 - Mathematical Logic Quarterly 31 (35‐36):569-573.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14.  14
    Zur Entwicklung Und Rechtfertigung Normativer Theoriendas Beispiel der Gerechtigkeit Von Glücksspielen.Hans Joachim Burscheid & Horst Struve - 2001 - Dialectica 55 (3):259–282.
  15.  4
    Zum Begriff Der Projektiv‐Metrischen Ebene.Horst Struve & Rolf Struve - 1988 - Mathematical Logic Quarterly 34 (1):79-88.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16.  2
    Affine Ebenen MIT Orthogonalitätsrelation.Horst Struve - 1984 - Mathematical Logic Quarterly 30 (13‐16):223-231.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17. An Epistemological Analysis of Leibniz's Calculus-the Example of the Curvature Radius.Horst Struve & Ingo Witzke - 2008 - Studia Leibnitiana 40 (1):29-47.