This long awaited book gives a thorough account of the mathematical foundations of Temporal Logic, one of the most important areas of logic in computer science.The book, which consists of fifteen chapters, moves on from giving a solid introduction in semantical and axiomatic approaches to temporal logic to covering the central topics of predicate temporal logic, meta-languages, general theories of axiomatization, many dimensional systems, propositionalquantifiers, expressive power, Henkin dimension, temporalization of other logics, and decidability results.Much of the research presented here (...) is frontline in the new results and in the unifying methodology. This is an indispensable reference work for both the pure logician and the theoretical computer scientist. (shrink)
A boolean algebra is shown to be completely representable if and only if it is atomic, whereas it is shown that neither the class of completely representable relation algebras nor the class of completely representable cylindric algebras of any fixed dimension (at least 3) are elementary.
For any finite n 3 there are two atomic n-dimensional cylindric algebras with the same atom structure, with one representable, the other, not.Hence, the complex algebra of the atom structure of a representable atomic cylindric algebra is not always representable, so that the class RCAn of representable n-dimensional cylindric algebras is not closed under completions. Further, it follows by an argument of Venema that RCAn is not axiomatisable by Sahlqvist equations, and hence nor by equations where negation can only occur (...) in constant terms.Similar results hold for relation algebras. (shrink)
We confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language L with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which (...) may occur arbitrarily many times), X has a proof containing exactly α + 1 variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987. (shrink)
In this paper, we introduce a new fragment of the first-order temporal language, called the monodic fragment, in which all formulas beginning with a temporal operator have at most one free variable. We show that the satisfiability problem for monodic formulas in various linear time structures can be reduced to the satisfiability problem for a certain fragment of classical first-order logic. This reduction is then used to single out a number of decidable fragments of first-order temporal logics and of two-sorted (...) first-order logics in which one sort is intended for temporal reasoning. Besides standard first-order time structures, we consider also those that have only finite first-order domains, and extend the results mentioned above to temporal logics of finite domains. We prove decidability in three different ways: using decidability of monadic second-order logic over the intended flows of time, by an explicit analysis of structures with natural numbers time, and by a composition method that builds a model from pieces in finitely many steps. (shrink)
We consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finite relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an (...) algebra is ω-categorical. We have a simple proof that the perfect extension of a representable relation algebra is completely representable. An important open problem from algebraic logic is addressed by devising another two-player game, and using it to derive equational axiomatisations for the classes of all representable relation algebras and representable cylindric algebras. Other instances of this approach are looked at, and include the step by step method. (shrink)
The tangle modality is a propositional connective that extends basic modal logic to a language that is expressively equivalent over certain classes of finite frames to the bisimulation-invariant fragments of both first-order and monadic second-order logic. This paper axiomatises several logics with tangle, including some that have the universal modality, and shows that they have the finite model property for Kripke frame semantics. The logics are specified by a variety of conditions on their validating frames, including local and global connectedness (...) properties. Some of the results have been used to obtain completeness theorems for interpretations of tangled modal logics in topological spaces. (shrink)
For every finite n ≥ 4 there is a logically valid sentence φ n with the following properties: φ n contains only 3 variables (each of which occurs many times); φ n contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol): φ n has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n - 1 variables. This result was first proved using the machinery of (...) algebraic logic developed in several research monographs and papers. Here we replicate the result and its proof entirely within the realm of (elementary) first-order binary predicate logic with equality. We need the usual syntax, axioms, and rules of inference to show that φ n has a proof with only n variables. To show that φ n has no proof with only n - 1 variables we use alternative semantics in place of the usual, standard, set-theoretical semantics of first-order logic. (shrink)
We show that for finite n⩾3n⩾3, every first-order axiomatisation of the varieties of representable n-dimensional cylindric algebras, diagonal-free cylindric algebras, polyadic algebras, and polyadic equality algebras contains an infinite number of non-canonical formulas. We also show that the class of structures for each of these varieties is non-elementary. The proofs employ algebras derived from random graphs.
A boolean algebra is shown to be completely representable if and only if it is atomic, whereas it is shown that neither the class of completely representable relation algebras nor the class of completely representable cylindric algebras of any fixed dimension are elementary.
We provide a canonical construction of conformal covers for finite hypergraphs and present two immediate applications to the finite model theory of relational structures. In the setting of relational structures, conformal covers serve to construct guarded bisimilar companion structures that avoid all incidental Gaifman cliques-thus serving as a partial analogue in finite model theory for the usually infinite guarded unravellings. In hypergraph theoretic terms, we show that every finite hypergraph admits a bisimilar cover by a finite conformal hypergraph. In terms (...) of relational structures, we show that every finite relational structure admits a guarded bisimilar cover by a finite structure whose Gaifman cliques are guarded. One of our applications answers an open question about a clique constrained strengthening of the extension property for partial automorphisms (EPPA) of Hrushovski, Herwig and Lascar. A second application provides an alternative proof of the finite model property (FMP) for the clique guarded fragment of first-order logic CGF, by reducing (finite) satisfiability in CGF to (finite) satisfiability in the guarded fragment, GF. (shrink)
We study relation algebras with n-dimensional relational bases in the sense of Maddux. Fix n with 3nω. Write Bn for the class of non-associative algebras with an n-dimensional relational basis, and RAn for the variety generated by Bn. We define a notion of relativised representation for algebras in RAn, and use it to give an explicit equational axiomatisation of RAn, and to reprove Maddux's result that RAn is canonical. We show that the algebras in Bn are precisely those that have (...) a complete relativised representation of this type. Then we prove that whenever 4nshrink)
We study a canonical modal logic introduced by Lemmon, and axiomatised by an infinite sequence of axioms generalising McKinsey’s formula. We prove that the class of all frames for this logic is not closed under elementary equivalence, and so is non-elementary. We also show that any axiomatisation of the logic involves infinitely many non-canonical formulas.
A cylindric algebra atom structure is said to be strongly representable if all atomic cylindric algebras with that atom structure are representable. This is equivalent to saying that the full complex algebra of the atom structure is a representable cylindric algebra. We show that for any finite n >3, the class of all strongly representable n-dimensional cylindric algebra atom structures is not closed under ultraproducts and is therefore not elementary. Our proof is based on the following construction. From an arbitrary (...) undirected, loop-free graph Γ, we construct an n-dimensional atom structure E(Γ), and prove, for infinite Γ, that E(Γ) is a strongly representable cylindric algebra atom structure if and only if the chromatic number of Γ is infinite. A construction of Erdős shows that there are graphs (k < ω)with infinite chromatic number, but having a non-principal ultraproduct $\prod _D\Gamma _k $ whose chromatic number is just two. It follows that $E(\Gamma _k )$ is strongly representable (each k < ω) but $\Pi _D E(\Gamma _k)$ is not. (shrink)
We prove, for each 4⩽ n ω , that S Ra CA n+1 cannot be defined, using only finitely many first-order axioms, relative to S Ra CA n . The construction also shows that for 5⩽n S Ra CA n is not finitely axiomatisable over RA n , and that for 3⩽m S Nr m CA n+1 is not finitely axiomatisable over S Nr m CA n . In consequence, for a certain standard n -variable first-order proof system ⊢ m (...) , n of m -variable formulas, there is no finite set of m -variable schemata whose m -variable instances, when added to ⊢ m , n as axioms, yield ⊢ m , n +1. (shrink)
We show that the loosely guarded and packed fragments of first-order logic have the finite model property. We use a construction of Herwig and Hrushovski. We point out some consequences in temporal predicate logic and algebraic logic.
We prove decidability of satisfiability of sentences of the monodic packed fragment of first-order temporal logic with equality and connectives Until and Since, in models with various flows of time and domains of arbitrary cardinality. We also prove decidability over models with finite domains, over flows of time including the real order.
We show that there exist 2 ℵ 0 equational classes of Boolean algebras with operators that are not generated by the complex algebras of any first-order definable class of relational structures. Using a variant of this construction, we resolve a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its canonical frames, but is not sound and complete for any first-order definable class of Kripke frames (a monomodal example can then be obtained using simulation results of (...) Thomason). The constructions use the result of Erd $\H{o}$ s that there are finite graphs with arbitrarily large chromatic number and girth. (shrink)
We characterize the modal logics of elementary classes of Kripke frames as precisely those modal logics that are axiomatized by modal axioms synthesized in a certain effective way from "quasi-positive" sentences of hybrid logic. These are pure positive hybrid sentences with arbitrary existential and relativized universal quantification over nominals. The proof has three steps. The first step is to use the known result that the modal logic of any elementary class of Kripke frames is also the modal logic of the (...) closure of this class under disjoint unions, generated subframes, bounded morphic images, and ultraroots. This latter class can be defined by the first-order sentences of a special syntactic form (called pseudo-equations by Goldblatt) that are valid in the former class. The second step is to translate these pseudo-equations into equivalent quasi-positive hybrid sentences. In the third and main step, we show that any quasi-positive sentence S generates an infinite set of modal formulas called "approximants," which together axiomatize a canonical modal logic that is sound and complete for the class of frames validating S. The proof is analogous to standard proofs of Sahlqvist's theorem. It generalizes to sets of quasi-positive sentences. The main result now follows. (shrink)
We characterise the class S Ra CA n of subalgebras of relation algebra reducts of n -dimensional cylindric algebras by the notion of a ‘hyperbasis’, analogous to the cylindric basis of Maddux, and by representations. We outline a game–theoretic approximation to the existence of a representation, and how to use it to obtain a recursive axiomatisation of S Ra CA n.
We show that the loosely guarded and packed fragments of first-order logic have the finite model property. We use a construction of Herwig and Hrushovski. We point out some consequences in temporal predicate logic and algebraic logic.
A conjecture of Gabbay (1981) states that any class of flows of time having the property known as finite H-dimension admits a finite set of expressively complete one-dimensional temporal connectives. Here we show that the class of 'circular' structures refutes the generalisation of this conjecture to Kripke frames. We then construct from this class, by a general method, a new class of irreflexive transitive flows of time that refutes the original conjecture. Our paper includes full descriptions of a method for (...) establishing finite H-dimension for a class of structures and of the technique for extending finite H-dimension to other classes, and an introduction surveying the area of expressive completeness. (shrink)
It is known that for all finite n ≥ 5, there are relation algebras with n-dimensional relational bases but no weak representations. We prove that conversely, there are finite weakly representable relation algebras with no n-dimensional relational bases. In symbols: neither of the classes RA n and wRRA contains the other.
We show that the bounded fragment of first-order logic and the hybrid language with and operators are equally expressive even with polyadic modalities, but that their fragments are equally expressive only for unary modalities.
Undecidability of Algebras of Binary Relations.Robin Hirsch, Ian Hodkinson & Marcel Jackson - 2021 - In Elena Aladova, Pablo Barceló, Johan van Benthem, Gerald Berger, Katrin M. Dannert, Neil Dewar, Răzvan Diaconescu, Ivo Düntsch, Wojciech Dzik, M. Eyad Kurd-Misto, Giambattista Formica, Michèle Friend, Robert Goldblatt, Georg Gottlob, Erich Grädel, Robin Hirsch, Ian Hodkinson, Marcel Jackson, Peter Jipsen, Roger D. Maddux, J. B. Manchak, Ewa Orłowska, Andreas Pieris, Boris Plotkin, Tatjana Plotkin, Vaughan R. Pratt, Ian Pratt-Hartmann, Tarek Sayed Ahmed, James Owen Weatherall, Dag Westerståhl, James Wimberley, Krzysztof Wójtowicz & Christian Wüthrich (eds.), Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Springer Verlag. pp. 267-287.details
Let S be a signature of operations and relations definable in relation algebra, let R be the class of all S-structures isomorphic to concrete algebras of binary relations with concrete interpretations for symbols in S, and let F be the class of S-structures isomorphic to concrete algebras of binary relations over a finite base. To prove that membership of R or F for finite S-structures is undecidable, we reduce from a known undecidable problem—here we use the tiling problem, the partial (...) group embedding problem and the partial group finite embedding problem to prove undecidability of finite membership of R or F for various signatures S. It follows that the equational theory of R is undecidable whenever S includes the boolean operators and composition. We give an exposition of the reduction from the tiling problem and the reduction from the group embedding problem, and summarize what we know about the undecidability of finite membership of R and of F for different signatures S. (shrink)
We prove that every first-order formula that is invariant under quasi-injective bisimulations is equivalent to a formula of the hybrid logic . Our proof uses a variation of the usual unravelling technique. We also briefly survey related results, and show in a standard way that it is undecidable whether a first-order formula is invariant under quasi-injective bisimulations.
We study the notion of H-dimension and the formally stronger k-variable property, as considered by Gabbay, Immerman and Kozen. We exhibit a class of flows of time that has H-dimension 3, and admits a finite expressively complete set of onedimensional temporal connectives, but does not have the k-variable property for any finite k.
We prove strong completeness results for some modal logics with the universal modality, with respect to their topological semantics over 0-dimensional dense-in-themselves metric spaces. We also use failure of compactness to show that, for some languages and spaces, no standard modal deductive system is strongly complete.
We consider a modal language for affine planes, with two sorts of formulas (for points and lines) and three modal boxes. To evaluate formulas, we regard an affine plane as a Kripke frame with two sorts (points and lines) and three modal accessibility relations, namely the point-line and line-point incidence relations and the parallelism relation between lines. We show that the modal logic of affine planes in this language is not finitely axiomatisable.
We prove that every normal extension of the bi-modal system S52 is finitely axiomatizable and that every proper normal extension has NP-complete satisfiability problem.
Extending a construction of Andreka, Givant, and Nemeti, we construct some finite vector spaces and use them to build finite non-representable relation algebras. They are simple, measurable, and persistently finite, and they validate arbitrary finite sets of equations that are valid in the variety RRA of representable relation algebras. It follows that there is no finitely axiomatisable class of relation algebras that contains RRA and validates every equation that is both valid in RRA and preserved by completions of relation algebras. (...) Consequently, the variety generated by the completions of representable relation algebras is not finitely axiomatisable. This answers a question of Maddux. (shrink)
We prove that every normal extension of the bi-modal system S52 is finitely axiomatizable and that every proper normal extension has NP-complete satisfiability problem.
Meta-languages are vital to the development and usage of formal systems, and yet the nature of meta-languages and associated notions require clarification. Here we attempt to provide a clear definition of the requirements for a language to be a meta-language, together with consideration of issues of proof theory, model theory and interpreters for such a language.