The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form a (...) bicomplete category of which topological spaces with topological continuous functions constitute a full subcategory. We also describe other uses of translations in providing new semantics for non-classical logics and in investigating duality between them. An important subclass of translations, the conservative translations, which strongly preserve consequence relations, is introduced and studied. Some specific new examples of translations involving modal logics, many-valued logics, para- consistent logics, intuitionistic and classical logics are also described. (shrink)
This work presents some basic results on a theory of translations between logics and a short revision about Łukasiewicz's logics. Then, it is shown, using facts about algebraic semantics, that there is a conservative translation from every finite Łukasiewicz's logic into classical logic. However, this is not a constructive result.
In 1999, da Silva, D'Ottaviano and Sette proposed a general definition for the term translation between logics and presented an initial segment of its theory. Logics are characterized, in the most general sense, as sets with consequence relations and translations between logics as consequence-relation preserving maps. In a previous paper the authors introduced the concept of conservative translation between logics and studied some general properties of the co-complete category constituted by logics and conservative translations between them. In this paper (...) we present some conservative translations involving classical logic, Lukasiewicz three-valued system L3, the intuitionistic system I1 and several paraconsistent logics, as for instance Sette's system P1, the D'Ottaviano and da Costa system J3 and da Costa's systems Cn, 1≤ n≤ω. (shrink)
In this paper we present a new hierarchy of analytical tableaux systems TNDC n, 1≤n<ω, for da Costa's hierarchy of propositional paraconsistent logics Cn, 1≤n<ω. In our tableaux formulation, we introduce da Costa's “ball” operator “o”, the generalized operators “k” and “”, for 1≤k, and the negations “~k”, for k≥1, as primitive operators, differently to what has been done in the literature, where these operators are usually defined operators. We prove a version of Cut Rule for the TNDC n, 1≤n<ω, (...) and also prove that these systems are logically equivalent to the corresponding systems Cn, 1≤n<ω. The systems TNDC n constitute completely automated theorem proving systems for the systems of da Costa's hierarchy Cn, 1≤n<ω. (shrink)
In 1999, da Silva, D'Ottaviano and Sette proposed a general definition for the term translation between logics and presented an initial segment of its theory. Logics are characterized, in the most general sense, as sets with consequence relations and translations between logics as consequence-relation preserving maps. In a previous paper the authors introduced the concept of conservative translation between logics and studied some general properties of the co-complete category constituted by logics and conservative translations between them. In this paper (...) we present some conservative translations involving classical logic, Lukasiewicz three-valued system L₃, the intuitionistic system Iⁱ and several para-consistent logics, as for instance Sette's system Pⁱ, the D'Ottaviano and da Costa system J₃ and da Costa's systems $\text{C}_{n}$ , 1 ≤ n ≤ ω. (shrink)
ABSTRACT This work presents the concepts of translation and conservative translation between logics. By using algebraic semantics we introduce several conservative translations involving the classical propositional calculus and the many-valued calculi of Post and Lukasiewicz.
The Joint Non-Trivialization Theorem, two Definability Theorems and the generalized Quantifier Elimination Theorem are proved for J 3-theories. These theories are three-valued with more than one distinguished truth-value, reflect certain aspects of model type logics and can. be paraconsistent. J 3-theories were introduced in the author's doctoral dissertation.
In this paper we present a new hierarchy of analytical tableaux systems TNDC n, 1≤n (...) and also prove that these systems are logically equivalent to the corresponding systems Cn, 1≤nshrink)
In the Organon Aristotle describes some deductive schemata in which inconsistencies do not entail the trivialization of the logical theory involved. This thesis is corroborated by three different theoretical topics by him discussed, which are presented in this paper. We analyse inference schema used by Aristotle in the Protrepticus and the method of indirect demonstration for categorical syllogisms. Both methods exemplify as Aristotle employs classical reductio ad absurdum strategies. Following, we discuss valid syllogisms from opposite premises (contrary and contradictory) studied (...) by the Stagerian in the Analytica Priora (B15). According to him, the following syllogisms are valid from opposite premises, in which small Latin letters stand for terms such as subject and predicate, and capital Latin letters stand for the categorical propositions such as in the traditional notation: (i) in the second figure, Eba,Aba ` Eaa (Cesare), Aba, Eba ` Eaa (Camestres), Eba, I ba ` Oaa (Festino), and Aba,Oba ` Oaa (Baroco); (ii) in the third one, Eab,Aab ` Oaa (Felapton), Oab,Aab ` Oaa (Bocardo) and Eab, Iab ` Oaa (Ferison). Finally, we discuss the passage from the Analytica Posteriora (A11) in which Aristotle states that the Principle of Non-Contradiction is not generally presupposed in all demonstrations (scientific syllogisms), but only in those in which the conclusion must be proved from the Principle; the Stagerian states that if a syllogism of the first figure has the major term consistent, the other terms of the demonstration can be each one separately inconsistent. These results allow us to propose an interpretation of his deductive theory as a broad sense paraconsistent theory. Firstly, we proceed to a hermeneutical analysis, evaluating its logical significance and the interplay of the results with some other points of Aristotle’s philosophy. Secondly, we point to a logical interpretation of the Aristotelian syllogisms from opposite premises in the antilogisms method proposed by Christine Ladd-Franklin in 1883, and we also present a logical treatment of the Aristotelian demonstration with inconsistent material in the paraconsistent logics Cn, 1 _ n _!, introduced by da Costa in 1963. These two issues seem having not yet been analysed in detail in the literature. (shrink)
No Órganon Aristóteles descreve alguns esquemas dedutivos nos quais a presença de inconsistências não acarreta a trivialização da teoria lógica envolvida. Esta tese é corroborada por três diferentes situações teóricas estudadas por ele, as quais são apresentadas neste trabalho. Analizamos o esquema de inferência utilizado por Aristóteles no Protrepticus e o método de demonstração indireta para os silogismos categóricos. Ambos os métodos exemplificam como Aristóteles emprega estratégias de redução ao absurdo logicamente clássicas. Na sequência, discutimos os silogismos válidos a partir (...) de premissas opostas (contrárias e contraditórias) estudadas pelo Estagirita no Analytica Priora (B15). De acordo com o autor, os seguintes silogismos são válidos a partir de premissas opostas, nos quais letras latinas minúsculas denotam termos como sujeito e predicado, enquanto que letras latinas maiúsculas denotam proposições categóricas tal como na notação tradicional: (i) na segunda figura, Eba,Aba ` Eaa (Cesare), Aba, Eba ` Eaa (Camestres), Eba, I ba ` Oaa (Festino), e Aba,Oba ` Oaa (Baroco); (ii) na terceira, Eab,Aab ` Oaa (Felapton), Oab,Aab ` Oaa (Bocardo) e Eab, Iab ` Oaa (Ferison). Por fim, discutimos a passagem do Analytica Posteriora (A11) no qual Aristóteles enuncia que o Princípio de Não-Contradição não é, em geral, pressuposto de toda demonstração (silogismo científico), mas apenas daquelas nas quais a conclusão deve ser provada a partir do Princípio; o Estagirita enuncia que se um silogismo da primeira figura tiver o termo maior consistente, os outros termos da demonstração podem ser separadamente inconsistentes. Estes resultados permitem-nos propor uma interpretação de sua teoria dedutiva como uma teoria paraconsistente lato sensu. Primeiramente, efetuamos uma análise hermenêutica, avaliando seu significado lógico e a correlação desses resultados com outros aspectos da filosofia de Aristóteles. Em segundo lugar, consignamos uma interpretação dos silogismos aristotélicos a partir de premissas opostas à luz dos antilogismos propostos por Christine Ladd-Franklin em 1883, e da demonstração aristotélica com termos inconsistentes nas lógicas paraconsistentes Cn, 1 n !, introduzidas por da Costa em 1963. Esses dois aspectos não parecem ter sido ainda detalhadamente analisados na literatura. DOI:10.5007/1808-1711.2010v14n1p71. (shrink)
This volume corresponds to the Proceedings of the XIII Brazilian Logic Conference held at the CLE - Centre for Logic, Epistemology and the History of Science in Campinas, SP, Brazil from May 26-30, 2003 under the auspices of the SBL - Brazilian Logic Society and the ASL - Association for Symbolic Logic.
O principal objetivo deste artigo é apresentar uma identidade possível entre os conceitos de forma e de qualidade na filosofia de Charles Sanders Peirce, por meio de seus argumentos em sua Semiótica e em sua Cosmologia. Em outras palavras, nosso objetivo é mostrar que a primeiridade consiste em uma forma, parte constitutiva da natureza da terceiridade, na medida em que a tendência à generalização ou à aquisição de hábitos estava prefigurada na origem do cosmos. De natureza indutiva, o passo do (...) nada absoluto para uma unidade de qualidades prefigura um universo inteligível de natureza formal. Esta unidade já pode ser considerada uma restrição de uma potencialidade de força maior presente naquele nada germinal: a primeira categoria é configurada, então, como sendo de natureza potencial qualitativa. O adjetivo “qualitativa” apresenta uma espécie de restrição da potencialidade para a qual nos referimos: tal potencial é desta ou daquela espécie. A segunda categoria, por sua vez, surge de um caos de sentimentos: não é a interação entre tais sentimentos que traz a segunda categoria à realidade, mas a mera manifestação do sentimento que é, por sua vez, caracterizado como a aparência momentânea da qualidade. Esta aparência não é potencial, mas atual. Ela já é um fato; ela já é uma restrição da potencialidade qualitativa. Sentimento enquanto atualidade e qualidade em seu estado potencial prefiguram a origem do outro que se apresenta: este outro está, portanto, inscrito na natureza da qualidade e já apresenta a dualidade objeto e objeto representado. Por fim, a tendência à generalização é reconhecida por meio das relações que as qualidades estabelecem entre si: na medida em que o aparecimento de uma ou mais qualidades se manteve insistente, tais qualidades começaram a estabelecer relações entre si, permitindo a formação indutiva de leis e objetos mais complexos, mas sempre devedores do material disponível prefigurado na origem: qualidades. (shrink)
This volume presents the proceedings from the Eleventh Brazilian Logic Conference on Mathematical Logic held by the Brazilian Logic Society in Salvador, Bahia, Brazil. The conference and the volume are dedicated to the memory of professor Mario Tourasse Teixeira, an educator and researcher who contributed to the formation of several generations of Brazilian logicians. Contributions were made from leading Brazilian logicians and their Latin-American and European colleagues. All papers were selected by a careful refereeing processs and were revised and updated (...) by their authors for publication in this volume. There are three sections: Advances in Logic, Advances in Theoretical Computer Science, and Advances in Philosophical Logic. Well-known specialists present original research on several aspects of model theory, proof theory, algebraic logic, category theory, connections between logic and computer science, and topics of philosophical logic of current interest. Topics interweave proof-theoretical, semantical, foundational, and philosophical aspects with algorithmic and algebraic views, offering lively high-level research results. (shrink)
After a brief promenade on the several notions of translations that appear in the literature, we concentrate on three paradigms of translations between logics: ( conservative ) translations , transfers and contextual translations . Though independent, such approaches are here compared and assessed against questions about the meaning of a translation and about comparative strength and extensibility of a logic with respect to another.
In this paper we introduce the concept of conservative translation between logics. We present some necessary and sufficient conditions for a translation to be conservative and study some general properties of logical systems, these properties being characterized by the existence of conservative translations between the systems. We prove that the class constituted by logics and conservative translations between them determines a co-complete subcategory of the bi-complete category constituted by logics and translations.
This impressive compilation of the material presented at the Second World Congress on Paraconsistency held in Juquehy-Sao Sebastião, São Paulo, Brazil, represents an integrated discussion of all major topics in the area of paraconsistent logic---highlighting philosophical and historical aspects, major developments and real-world applications.
In this paper we discuss an interpretation of intuitionistic type theory in many-sorted arithmetic with so-called conditional application. Via the formulas-as-types correspondence the arithmetical system in turn can be embedded in ML, resulting in a characterization of strong Σ-elimination by an axiom of conditional choice.