Abstract During 1745?1755 Bo?kovi? explicitly used the concept of scientific theory in three cases: the theory of forces existing in nature, the theory of transformations of geometric loci, and the theory of infinitesimals. The theory first mentioned became the famous theory of natural philosophy in 1758, the second was published in the third volume of his mathematical textbook Elementorum Universae Matheseos (1754), and the third theory was never completed, though Bo?kovi? repeatedly announced it from 1741 on. The treatment of continuity (...) and infinity in natural philosophy, geometry and infinitesimal analysis brought about inter?theory relations in Bo?kovi?'s work during his Roman period. The two constructed theories of Bo?kovi?, the theory of forces and the theory of geometric transformations, directly influenced the idea for the construction of his third theory. These written theories refer to understanding and effective application of continuity and infinity in natural philosophy and geometry, and this task, according to Bo?kovi?, requires methodological support from the theory of infinitesimals. (shrink)
Druga knjiga Petrićeve Pancosmije potpuno nam otkriva što je Petrić mislio de continuo ili de divisibilitate quantitatis te nam ujedno nudi mnoge detalje Petrićeve neuspješne strategije pri osporavanju Aristotelovih pojmova neprekidnine i potencijalne beskonačnine. Prigovarajući Aristotelu, Petrić i ne htijući upozorava na glavne domete Aristotelova nauka o neprekidnini, ali nudi svoja, drugačija rješenja, poput zamisli o najmanjoj nedjeljivoj crti. Iako svojim rješenjima ne uspijeva postići ono što je Aristotel blistavo postigao pojmom neprekidnine u tumačenju prirode i matematike, Petrić unutar polemike (...) s Aristotelom postavlja nova pitanja kad se bavi računom s beskonačninama i genealogijom znanosti.The second book of Pancosmia provides full insight into Petrić’s view of the continuum or de divisibilitate quantitatis, offering us many details on Petrić’s futile strategy in refuting Aristotle’s notions of the continuum and the potential infinite. In his objections to Aristotle, Petrić implicitly points the major contributions of Aristotle’s doctrine of continuum, but also submits his own solutions such as the idea of the minimal indivisible line. Although his solutions failed to bring him the results as brilliant as those of Aristotle with the notion of the continuum in the interpretation of nature and mathematics, within his polemic with Aristotle, Petrić comes forward with new questions dealing with the calculus of infinite quantities and genealogy of science. (shrink)
Tijekom svoje kratke filozofske profesure na Bečkom sveučilištu i u plemićkom zavodu Collegium Theresianum , ali i potom dok je bio profesorom teologije u Beču, isusovac Josip Zanchi, riječki plemić, četiri je puta tiskao svoj udžbenik Physica particularis, koji je sadržavao raspravu iz meteorologije. U svim je tim izdanjima izlaganje o uzroku dúge započeo povijesnom bilješkom, u kojoj je sažeto prikazao de Dominisov, Descartesov i Newtonov doprinos objašnjenju dúge. Potraga za Zanchijevim izvorom u optičkim i prirodnofilozofskim djelima objavljenim nakon Newtonova (...) djela Opticks otkrila je tri newtonovca koji su također spomenuli de Dominisa: Henryja Pembertona, Voltairea i Antonija Genovesija. Njima treba pridodati i četvrtoga: Pietera van Musschenbroeka, koji je de Dominisovu ulogu u povijesti istraživanja dúge opisao pod Genovesijevim utjecajem, ali tek u posmrtno objavljenom djelu Introductio ad philosophiam naturalem .Pri sastavljaju svoje povijesne bilješke o istraživanju dúge Josip Zanchi slijedio je Newtona ili nekog newtonovca. Tvrdio je više od Newtona jer je za njega de Dominis »prvi od svih otkrio pravi uzrok dúge«, pri čem je oprezno dometnuo videtur, a objektivnije je od Newtona i nekih newtonovaca opisao Descartesov doprinos. Kad je pak studentima objašnjavao dúgu, slijedio je posljednju riječ znanosti – Newtona.Uporabom Zanchijeva udžbenika Physica particularis s de Dominisovim optičkim i meteorološkim prinosom mogli su se susresti profesori i studenti filozofije i u Hrvatskoj. Taj su udžbenik posjedovale knjižnice na dvama isusovačkim filozofskim učilištima: u Zagrebačkom kolegiju najkasnije od 1758., a u Požeškom kolegiju najkasnije od 1769. godine.While teaching philosophy at the University of Vienna and the elite school Collegium Theresianum , but also theology in the same city, Josip Zanchi, Jesuit of noble birth from Rijeka, had published four editions of his manual Physica particularis, containing also a most comprehensive meteorological treatise. In each of the four Vienna editions his elaboration on the cause of rainbow opens a historical paragraph comprising a short survey of de Dominis’, Descartes’ and Newton’s contributions to the explanation of rainbow. Search for Zanchi’s source in the works dealing with natural philosophy published after Newton’s Opticks has brought to light three Newtonians who also mentioned de Dominis: Henry Pemberton, Voltaire and Antonio Genovesi. The name of Pieter van Musschenbroek should be added to this list. He described de Dominis’ role in the history of the explanation of rainbow under the influence of Genovesi, published posthumously in his work Introductio ad philosophiam naturalem .While composing his historical paragraph on the explanation of rainbow, Josip Zanchi followed in the footsteps of Newton or a Newtonian. He exceeded Newton by stating that de Dominis was »the first to have discovered the true cause of rainbow,« carefully employing videtur in support of his argument, his description of Descartes’ contribution being more objective than that of Newton or some Newtonians. However, in his academic lectures on rainbow, he followed the latest scientific discoveries – Newton.Through Zanchi’s manual Physica particularis, Croatian professors and students of philosophy could also have become familiar with de Dominis’ optical and meteorological contribution. This manual was available in the libraries of two Jesuit philosophical schools: Zagreb College or Collegium Zagrabiense, not later than 1758, and in Požega College or Collegium Poseganum, from 1769 at the latest. (shrink)
In the article, the author deals with the political and social influences of the relationship between the state and religious communities in France. The first part of the paper is an analysis of historical context and the construction of laicism in France through its local characteristics, values and social strengths, contributing to its formation. The fact that Catholic Church was one of the main legitimizing pillars of?the old regime?, permanently determined the relationship between church and state, most importantly - it?s (...) subsequent social exclusion under the Republic. The 1789 French revolution in conjunction with the 1905 law on the Separation of church and state, up until present time, have been seen as the most important events in defining the relationship between political and religious entities in France. The second part of the paper continues in outlining the founding logic and principles of the contemporary relationship between religious communities and the French state. The article concludes in suggesting that through its persistence of a purely Laicistic model of state-church affiliation, view of the nation as a community of citizens, Weberian definition of the State, and the acceptance of the public sphere as common space in which communal interests are negated, France today represents an isolated island on the European continent. nema. (shrink)
Pointing to the importance of invariance principles has been ranked as one of Einstein’s greatest merits. The symmetries represent an additional category used in a description of the physical world, additional to initial conditions and the very laws of Nature, as distinguished by Newton. Some invariances related to space and time are easy to describe: that the laws of nature are the same everywhere, that they are time independent, and that they do not change if some physical system is subjected (...) to a rotation around an axis in space. The relativistic invariance, which Einstein re-established in his special relativity, was based on giving a full physical meaning to the transformations which Lorentz used to relate observers moving uniformly with respect to each other. He realized that there is no absolute “at rest”, and no sensible “simultaneous” events. What is absolute in his relativity is the constant speed of light, and a well defined proper-time interval. The relativity entered physics as the first great creative principle on Einstein’s list. Subsequently, its marriage to the quantum principle established in atomic physics, brought out the quantum field theory as a mighty tool for the future investigation of the subatomic world. The newly discovered fundamental interactions urged to look for a principle explaining them. It has been found in the form of the gauge principle underlying the present day standard model of elementary particle interactions. It is remarkable that Einstein gave his magical touch also to quantum and gauge principles. Still, the most important Einstein’s idea is that the whole of physics has to be expressed in Minkowski’s space, subject to Lorentz transformations. Today we are aware that, like other symmetries with their restrictions, Lorentz symmetry would be restricted to the non cosmological scale. New ideas in conjunction with the forthcoming cosmological measurements may lead to astonishing results. (shrink)
Die Hervorhebung der Bedeutung der Invarianzprinzipien wird zu den größten Verdiensten Einsteins gezählt. Die Symmetrien stellen eine neue Kategorie zur Beschreibung der physikalischen Welt dar, zusätzlich zu den Randbedingungen und den Naturgesetzen, wie sie von Newton aufgestellt wurden. Einige Invarianzen in Bezug auf die Zeit und den Raum sind leicht zu verstehen: dass die Naturgesetze überall die gleichen sind, ferner dass sie zeitunabhängig und unveränderlich sind, wenn ein Bezugssystem der Drehung im Raum um eine Achse ausgesetzt ist. Die relativistische Invarianz (...) hingegen, die Einstein in seine Relativitätstheorie eingebaut hat, bleibt weniger plausibel. Den Lorentz-Transformationen, mit denen Beobachter bei konstanter Geschwindigkeit in einem gemeinsamen Bezugssystem mathematisch beschrieben werden, maß Einstein ihre volle physikalische Bedeutung zu, infolge seiner Erkenntnis, dass es nicht möglich ist, den absoluten Stillstand zu bestimmen oder die Gleichzeitigkeit verschiedener Ereignisse festzustellen. Gleichwohl bestehen in der Relativität auch absolute Bestandteile, die für alle Beobachter gelten: die konstante Lichtgeschwindigkeit und ein genau definiertes Intervall der Eigenzeit des Beobachters. Die Relativität hielt als eines der ersten „kreativen Prinzipien“, die Einstein erkannt hatte, ihren Einzug in die Physik. In Verbindung mit dem Quantenprinzip, das aus der Erforschung der Atomphysik hervorgeht, kam die Quantentheorie der Felder zustande, eine mächtige Waffe für künftige Erforschungen der subatomaren Welt. Die neuentdeckten fundamentalen Interaktionen eröffneten die Frage nach einem neuen Prinzip, das sie erklären konnte. Ein solches kreatives Prinzip wurde im mathematischen Messprinzip erkannt, auf dem auch das heutige Standardmodell des Zusammenwirkens von Elementarteilchen gründet. Es ist erstaunlich, dass beide Prinzipien, das Quantenprinzip und das Messprinzip, aus Einsteins Arbeit hervorgehen. Doch vor allem bleibt Einsteins bedeutendste Idee, dass nämlich die gesamte Physik im Minkowski-Raum zu verorten ist, den Lorentz-Transformationen unterstellt. Heute ist man sich der Tatsache bewusst, dass, wie bei allen anderen Symmetrien mitsamt ihrer Einschränkungen, auch bei der Lorentz’schen mit Abweichungen auf der kosmischen Skala zu rechnen ist. Neue Ideen in Zusammenhang mit kosmischen Messungen, deren Zeugen wir schon jetzt sind, könnten zu erstaunlichen Ergebnissen führen. (shrink)
Le fait d’avoir signalé l’importance du principe de l’invariance est considéré comme un des plus grands mérites d’Einstein. Les symétries sont présentées comme une nouvelle catégorie dans la description du monde physique, laquelle s’ajoute aux catégories des conditions initiales et des lois mêmes de la nature, définies par Newton. Certaines symétries de l’espace et du temps sont faciles à décrire: les lois de la physique doivent être les mêmes partout et indépendantes du temps, de même que ces lois ne changent (...) pas si un système physique subit une rotation autour d’un axe dans l’espace. D’autre part l’invariance relativiste qu’Einstein a incorporé dans sa théorie de la relativité est moins évidente. Einstein a donné une signification physique pleine aux transformations dont se servait Lorentz pour relier mathématiquement les observateurs en mouvement relatif uniforme, reconnaissant qu’il n’était pas possible d’établir le repos absolu ou de déterminer la simultanéité des faits différents. Pourtant la relativité a des éléments absolus, identiques pour tous les observateurs: la vitesse constante de la lumière et l’intervalle bien défini du temps de l’observateur. La relativité a fait son entrée en physique comme un des principes créatifs d’Einstein. Associée au principe quantique provenant des recherches atomiques, elle a donné naissance à la théorie des champs quantiques qui sera une arme puissante dans les recherches futures sur le monde subatomique. Les nouvelles interactions fondamentales, faibles et fortes qui y ont été découvertes ont posé la question d’un nouveau principe responsable des interactions fondamentales. Un tel « principe créatif » se trouve dans le principe mathématique de jauge sur lequel repose le modèle standard actuel des interactions des particules élémentaires actuelles. Il est remarquable que les deux autres principes, le principe quantique et le principe de jauge sont également attribués à Einstein. Pourtant l’idée la plus importante d’Einstein est de faire entrer l’intégralité de la physique dans l’espace de Minkowski soumis aux transformations de Lorentz. Aujourd’hui nous sommes conscients du fait que, comme les autres symétries ont leurs restrictions, on peut, à l’échelle cosmique, s’attendre à des écarts par rapport à la symétrie de Lorentz. Les nouvelles idées conjugées avec des mesurages cosmiques dont nous sommes déjà témoins, peuvent nous conduire vers des découvertes surprenantes. (shrink)