Search results for 'J. C. E. Dekker' (try it on Scholar)

1000+ found
Order:
  1.  2
    J. C. E. Dekker (1957). Myhill J. And Shepherdson J. C.. Effective Operations on Partial Recursive Functions. Zeitschrift Für Mathematische Logik Und Grundlagen der Mathetnatik, Vol. 1 , Pp. 310–317. [REVIEW] Journal of Symbolic Logic 22 (3):303.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  2. J. C. E. Dekker (1957). Review: J. Myhill, J. C. Shepherdson, Effective Operations on Partial Recursive Functions. [REVIEW] Journal of Symbolic Logic 22 (3):303-303.
     
    Export citation  
     
    My bibliography  
  3. J. C. E. Dekker (1964). Cleave J. P.. Creative functions. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 7 , pp. 205–212. [REVIEW] Journal of Symbolic Logic 29 (2):102-103.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  4. J. C. E. Dekker (1964). Review: J. P. Cleave, Creative Functions. [REVIEW] Journal of Symbolic Logic 29 (2):102-103.
     
    Export citation  
     
    My bibliography  
  5.  7
    J. C. E. Dekker (1981). Twilight Graphs. Journal of Symbolic Logic 46 (3):539-571.
    This paper deals primarily with countable, simple, connected graphs and the following two conditions which are trivially satisfied if the graphs are finite: (a) there is an edge-recognition algorithm, i.e., an effective procedure which enables us, given two distinct vertices, to decide whether they are adjacent, (b) there is a shortest path algorithm, i.e., an effective procedure which enables us, given two distinct vertices, to find a minimal path joining them. A graph $G = \langle\eta, \eta\rangle$ with η as set (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  6.  5
    J. C. E. Dekker (1990). An Isolic Generalization of Cauchy's Theorem for Finite Groups. Archive for Mathematical Logic 29 (4):231-236.
    In his note [5] Hausner states a simple combinatorial principle, namely: $$(H)\left\{ {\begin{array}{*{20}c} {if f is a function a non - empty finite set \sigma into itself, p a} \\ {prime, f^p = i_\sigma and \sigma _0 the set of fixed points of f, then } \\ {\left| \sigma \right| \equiv \left| {\sigma _0 } \right|(mod p).} \\\end{array}} \right.$$ .He then shows how this principle can be used to prove:Fermat's little theorem,Cauchy's theorem for finite groups,Lucas' theorem for binomial numbers.Letε=(0,1, ...),ℱ (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  7.  5
    M. C. & E. Cavaignac (1931). Le Monde Mediterraneen Jusqu'au IVe Siecle Avant J.-C. Journal of Hellenic Studies 51:125.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8.  2
    M. C., L. Laurand & E. Derenne (1931). Petit Atlas pratique d'histoire grecque et romaineLes proces d'impiete intentes aux philosophes a Athenes au Veme et au IVeme siecles avant J.-C. Journal of Hellenic Studies 51:126.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  9.  18
    J. C. E. Dekker (1986). The Inclusion-Exclusion Principle for Finitely Many Isolated Sets. Journal of Symbolic Logic 51 (2):435-447.
    A nonnegative interger is called a number, a collection of numbers a set and a collection of sets a class. We write ε for the set of all numbers, o for the empty set, N(α) for the cardinality of $\alpha, \subset$ for inclusion and $\subset_+$ for proper inclusion. Let α, β 1 ,...,β k be subsets of some set ρ. Then α' stands for ρ-α and β 1 ⋯ β k for β 1 ∩ ⋯ ∩ β k . For (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  10.  6
    J. C. E. Dekker (1971). Two Notes on Vector Spaces with Recursive Operations. Notre Dame Journal of Formal Logic 12 (3):329-334.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  11.  14
    J. C. E. Dekker (1971). Countable Vector Spaces with Recursive Operations. Part II. Journal of Symbolic Logic 36 (3):477-493.
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  12.  14
    J. C. E. Dekker (1969). Countable Vector Spaces with Recursive Operations. Part I. Journal of Symbolic Logic 34 (3):363-387.
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  13.  1
    J. C. E. Dekker & E. Ellentuck (1974). Recursion Relative to Regressive Functions. Annals of Mathematical Logic 6 (3-4):231-257.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  14.  12
    J. C. E. Dekker & E. Ellentuck (1989). Isols and the Pigeonhole Principle. Journal of Symbolic Logic 54 (3):833-846.
    In this paper we generalize the pigeonhole principle by using isols as our fundamental counting tool.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  15.  3
    J. C. E. Dekker (1978). Projective Bigraphs with Recursive Operations. Notre Dame Journal of Formal Logic 19 (2):193-199.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  16.  7
    C. H. Applebaum & J. C. E. Dekker (1970). Partial Recursive Functions and Ω-Functions. Journal of Symbolic Logic 35 (4):559-568.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  17. J. C. E. Dekker (1969). Countable Vector Spaces with Recursive Operations Part I1. Journal of Symbolic Logic 34 (3):363-387.
  18.  5
    J. C. E. Dekker (1986). Isols and Burnside's Lemma. Annals of Pure and Applied Logic 32 (3):245-263.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  19.  2
    J. C. E. Dekker & E. Ellentuck (1992). Myhill's Work in Recursion Theory. Annals of Pure and Applied Logic 56 (1-3):43-71.
    In this paper we discuss the following contributions to recursion theory made by John Myhill: two sets are recursively isomorphic iff they are one-one equivalent; two sets are recursively isomorphic iff they are recursively equivalent and their complements are also recursively equivalent; every two creative sets are recursively isomorphic; the recursive analogue of the Cantor–Bernstein theorem; the notion of a combinatorial function and its use in the theory of recursive equivalence types.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  20. J. C. E. Dekker (1960). Review: Anil Nerode, Extensions to Isols. [REVIEW] Journal of Symbolic Logic 25 (4):359-361.
     
    Export citation  
     
    My bibliography  
  21.  3
    J. C. E. Dekker (1981). Automorphisms of $\Omega$-Cubes. Notre Dame Journal of Formal Logic 22 (2):120-128.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  22.  2
    J. C. E. Dekker (1966). Review: John Myhill, Recursive Equivalence Types and Combinatorial Functions. [REVIEW] Journal of Symbolic Logic 31 (3):510-511.
  23.  4
    J. C. E. Dekker (1982). Automorphisms of $\Omega$-Octahedral Graphs. Notre Dame Journal of Formal Logic 23 (4):427-434.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  24.  3
    J. C. E. Dekker (1976). Projective Planes of Infinite but Isolic Order. Journal of Symbolic Logic 41 (2):391-404.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  25. J. C. E. Dekker (1967). Review: Arnold Oberschelp, Ein Satz uber die Unlosbarkeitsgrade der Mengen von Naturlichen Zahlen. [REVIEW] Journal of Symbolic Logic 32 (1):124-124.
    Translate
     
     
    Export citation  
     
    My bibliography  
  26.  1
    J. C. E. Dekker (1962). Review: Hao Wang, Alternative Proof of a Theorem of Kleene. [REVIEW] Journal of Symbolic Logic 27 (1):81-82.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27.  1
    J. C. E. Dekker (1996). Myhill John. Recursive Equivalence Types and Combinatorial Functions. Logic, Methodology and Philosophy of Science, Proceedings of the 1960 International Congress, Edited by Nagel Ernest, Suppes Patrick, and Tarski Alfred, Stanford University Press, Stanford, Calif., 1962, Pp. 46–55. [REVIEW] Journal of Symbolic Logic 31 (3):510-511.
    Direct download  
     
    Export citation  
     
    My bibliography  
  28. Kenneth Appel & J. C. E. Dekker (1966). Infinite Series of Isols. Journal of Symbolic Logic 31 (4):652.
  29. J. C. E. Dekker (1960). Nerode Anil. Extensions to Isols. Annals of Mathematics, Second Series, Vol. 73 , Pp. 362–403. Journal of Symbolic Logic 25 (4):359-361.
  30. J. C. E. Dekker (1967). Oberschelp Arnold. Ein Satz über die Unlösbarkeitsgrade der Mengen von natürlichen Zahlen. Abhandlungen der Braunschweigische Wissenschaftliche Gesellschaft , vol. 12 , pp. 1–3. [REVIEW] Journal of Symbolic Logic 32 (1):124.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  31. J. C. E. Dekker (1962). Wang Hao. Alternative Proof of a Theorem of Kleene. Journal of Symbolic Logic 27 (1):81-82.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  32.  11
    G. L. J. (1922). Notes on the Greek Anthology. By T. W. Lumb, M.A. (Oxon.), Assistant-Master at Merchant Taylors' School, E.C. One Volume. Small Octavo. Pp. 168. London: Rivingtons, 34, King Street, Covent Garden, 1920. 7s. 6d. [REVIEW] The Classical Review 36 (1-2):42-43.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  33.  14
    S. B. R. J. (1915). History of Roman Private Law. Part II : Jurisprudence. By E. C. Clark, LL.D. 2 Vols. Pp. Xiv + 802. Cambridge: University Press, 1914. Price 21s. Net. [REVIEW] The Classical Review 29 (03):92-93.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  34.  10
    M. P. C. (1962). Book Review:Toward a Reasonable Society. C. E. Ayres. [REVIEW] Ethics 73 (1):66-.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  35.  9
    D. B. C. (1919). Book Review:The Meaning of National Guilds. C. E. Bechhofer, M. B. Reckitt. [REVIEW] Ethics 29 (4):504-.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  36. C. E. Bredlau (1969). Review: J. C. E. Dekker, Good Choice Sets; J. C. E. Dekker, The Recursive Equivalence Type of a Class of Sets. [REVIEW] Journal of Symbolic Logic 34 (3):518-519.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  37. C. E. Bredlau (1969). Review: J. C. E. Dekker, Regressive Isols. [REVIEW] Journal of Symbolic Logic 34 (3):519-519.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  38. C. E. Bredlau (1969). Dekker J. C. E.. Good Choice Sets. Annali Della Scuola Normale Superiore di Pisa, Scienze Fisiche E Mathematiche, Series 3 Vol. 20 , Pp. 367–393.Dekker J. C. E.. The Recursive Equivalence Type of a Class of Sets. Bulletin of the American Mathematical Society, Vol. 70 , Pp. 628–632. [REVIEW] Journal of Symbolic Logic 34 (3):518-519.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  39. C. E. Bredlau (1969). Dekker J. C. E.. Regressive Isols. Sets, Models and Recursion Theory. Proceedings of the Summer School in Mathematical Logic and Tenth Logic Colloquium, Leicester, August-September 1965, Edited by Crossley John N., Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, and Humanities Press, New York, 1967, Pp. 272–296. [REVIEW] Journal of Symbolic Logic 34 (3):519.
  40.  1
    A. Nerode (1962). Review: J. C. E. Dekker, J. Myhill, Retraceable Sets. [REVIEW] Journal of Symbolic Logic 27 (1):84-85.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  41.  1
    Norman Shapiro (1956). Review: J. C. E. Dekker, A Theorem on Hypersimple Sets. [REVIEW] Journal of Symbolic Logic 21 (1):100-100.
    Direct download  
     
    Export citation  
     
    My bibliography  
  42.  1
    Kenneth Appel (1966). Review: J. C. E. Dekker, Infinite Series of Isols. [REVIEW] Journal of Symbolic Logic 31 (4):652-652.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  43. Kenneth Appel (1966). Review: J. C. E. Dekker, An Infinite Product of Isols. [REVIEW] Journal of Symbolic Logic 31 (4):652-652.
  44. Martin Davis (1962). Review: J. C. E. Dekker, J. Myhill, Some Theorems on Classes of Recursively Enumerable Sets. [REVIEW] Journal of Symbolic Logic 27 (1):84-84.
  45. Martin Davis (1955). Review: J. C. E. Dekker, Two Notes on Recursively Enumerable Sets. [REVIEW] Journal of Symbolic Logic 20 (1):73-74.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  46. Erik Ellentuck (1967). Review: J. C. E. Dekker, The Minimum of Two Regressive Isols. [REVIEW] Journal of Symbolic Logic 32 (4):527-527.
     
    Export citation  
     
    My bibliography  
  47. Louise Hay (1971). Review: J. C. E. Dekker, Closure Properties of Regressive Functions. [REVIEW] Journal of Symbolic Logic 36 (3):539-539.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  48. Alfred B. Manaster (1972). Review: J. C. E. Dekker, Les Fonctions combinatoires et les Isols. [REVIEW] Journal of Symbolic Logic 37 (2):406-406.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  49. Hugo Ribeiro (1954). Review: J. C. E. Dekker, The Constructivity of Maximal Dual Ideals in Certain Boolean Algebras. [REVIEW] Journal of Symbolic Logic 19 (2):122-123.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  50. Norman Shapiro (1956). Review: J. C. E. Dekker, Productive Sets. [REVIEW] Journal of Symbolic Logic 21 (1):99-100.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000