The first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelian p-groups, the class of Abelian torsion groups, and the special class of "rank-homogeneous" trees. We consider these conditions as a possible definition of what it means for a class of structures to have "Ulm type". The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply (...) this result to show that there is no Turing computable embedding of the class of graphs into the class of "rank-homogeneous" trees. The second main result says that there is a Turing computable embedding of the class of rank-homogeneous trees into the class of torsion-free Abelian groups. The third main result says that there is a "rank-preserving" Turing computable embedding of the class of rank-homogeneous trees into the class of Boolean algebras. Using this result, we show that there is a computable Boolean algebra of Scott rank ${\mathrm{\omega }}_{1}^{\mathrm{C}\mathrm{K}}$. (shrink)
Shepherdson [14] showed that for a discrete ordered ring I, I is a model of IOpen iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ₄), then R must be recursively saturated. In particular, the real closure of I, RC (I), is recursively saturated. We (...) also show that if R is a countable recursively saturated real closed ordered field, then there is an integer part I such that R = RC(I) and I is a nonstandard model of PA. (shrink)
For a computable structure A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}, there may not be a computable infinitary Scott sentence. When there is a computable infinitary Scott sentence φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document}, then the complexity of the index set I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}$$\end{document} is bounded by that of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document}. There are results giving “optimal” Scott sentences for (...) structures of various familiar kinds. These results have been driven by the thesis that the complexity of the index set should match that of an optimal Scott sentence. In this note, it is shown that the thesis does not always hold. For a certain subgroup of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}}$$\end{document}, there is no computable d-Σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma_2}$$\end{document} Scott sentence, even though the index set is d-Σ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^0_2}$$\end{document}. (shrink)
For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and (...) codes it into a computable structure. The second re-works Makkai's construction, incorporating an idea of Sacks. (shrink)
We extend results of Harizanov and Barker. For a relation R on a recursive structure /oA, we give conditions guaranteeing that the image of R in a recursive copy of /oA can be made to have arbitrary ∑α0 degree over Δα0. We give stronger conditions under which the image of R can be made ∑α0 degree as well. The degrees over Δα0 can be replaced by certain more general classes. We also generalize the Friedberg-Muchnik Theorem, giving conditions on a pair (...) of relations R and S under which the images of R and S can be made ∑α0 and independent over Δα0 in a recursive copy of /oA. (shrink)
Let be a recursive structure, and let R be a recursive relation on . Harizanov isolated a syntactical condition which is necessary and sufficient for to have recursive copies in which the image of R is r.e. of arbitrary r.e. degree. We had conjectured that a certain extension of Harizanov's syntactical condition would be necessary and sufficient for to have recursive copies in which the image of R is ∑α0 of arbitrary ∑α0 degree, but this is not the case. Here (...) we give examples illustrating some restrictions on the possible ∑α0 degrees. In these examples, the image of R cannot be ∑α0 of degree d unless d possesses an “α-table”. (shrink)
For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and (...) codes it into a computable structure. The second re-works Makkai's construction, incorporating an idea of Sacks. (shrink)
This paper calculates, in a precise way, the complexity of the index sets for three classes of computable structures: the class $K_{\omega _{1}^{\mathit{CK}}}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}$ , the class $K_{\omega _{1}^{\mathit{CK}}+1}$ of structures of Scott rank $\omega _{1}^{\mathit{CK}}+1$ , and the class K of all structures of non-computable Scott rank. We show that I(K) is m-complete $\Sigma _{1}^{1},\,I(K_{\omega _{1}^{\mathit{CK}}})$ is m-complete $\Pi _{2}^{0}$ relative to Kleen's O, and $I(K_{\omega _{1}^{\mathit{CK}}+1})$ is m-complete $\Sigma _{2}^{0}$ relative to O.
Computable structures of Scott rank ${\omega_1^{CK}}$ are an important boundary case for structural complexity. While every countable structure is determined, up to isomorphism, by a sentence of ${\mathcal{L}_{\omega_1 \omega}}$ , this sentence may not be computable. We give examples, in several familiar classes of structures, of computable structures with Scott rank ${\omega_1^{CK}}$ whose computable infinitary theories are each ${\aleph_0}$ -categorical. General conditions are given, covering many known methods for constructing computable structures with Scott rank ${\omega_1^{CK}}$ , which guarantee that the (...) resulting structure is a model of an ${\aleph_0}$ -categorical computable infinitary theory. (shrink)
In this paper, we give an example of a complete computable infinitary theory T with countable models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ and T has no uncountable model. In fact, ${\mathcal{M}}$ and ${\mathcal{N}}$ are (up to isomorphism) the only models of T. Moreover, for all computable ordinals α, the computable ${\Sigma_\alpha}$ part of T is hyperarithmetical. It follows from a theorem of Gregory (JSL 38:460–470, 1972; Not Am Math Soc 17:967–968, 1970) (...) that if T is a Π 1 1 set of computable infinitary sentences and T has a pair of models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ , then T would have an uncountable model. (shrink)
The Hanf number for a set S of sentences in \ is the least infinite cardinal \ such that for all \, if \ has models in all infinite cardinalities less than \, then it has models of all infinite cardinalities. Friedman asked what is the Hanf number for Scott sentences of computable structures. We show that the value is \. The same argument proves that \ is the Hanf number for Scott sentences of hyperarithmetical structures.
Here we prove that if T and T′ are strongly minimal theories, where T′ satisfies a certain property related to triviality and T does not, and T′ is model complete, then there is no computable embedding of Mod(T) into Mod(T′). Using this, we answer a question from [4], showing that there is no computable embedding of VS into ZS, where VS is the class of infinite vector spaces over Q, and ZS is the class of models of Th(Z, S). Similarly, (...) we show that there is no computable embedding of ACF into ZS, where ACF is the class of algebraically closed fields of characteristic 0. (shrink)
In this paper, we state a metatheorem for constructions involving coding. Using the metatheorem, we obtain results on coding a family of sets into a family of relations, or into a single relation. For a concrete example, we show that the set of limit points in a recursive ordering of type ω 2 can have arbitrary 2-REA degree.