10 found
Order:
  1.  5
    Inner Models with Many Woodin Cardinals.J. R. Steel - 1993 - Annals of Pure and Applied Logic 65 (2):185-209.
    We extend the theory of “Fine structure and iteration trees” to models having more than one Woodin cardinal.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  2.  10
    Projectively Well-Ordered Inner Models.J. R. Steel - 1995 - Annals of Pure and Applied Logic 74 (1):77-104.
  3.  18
    The Covering Lemma Up to a Woodin Cardinal.W. J. Mitchell, E. Schimmerling & J. R. Steel - 1997 - Annals of Pure and Applied Logic 84 (2):219-255.
  4.  6
    Iteration Trees.D. A. Martin & J. R. Steel - 2002 - Bulletin of Symbolic Logic 8 (4):545-546.
  5.  12
    The Well-Foundedness of the Mitchell Order.J. R. Steel - 1993 - Journal of Symbolic Logic 58 (3):931-940.
  6.  16
    Core Models with More Woodin Cardinals.J. R. Steel - 2002 - Journal of Symbolic Logic 67 (3):1197-1226.
  7.  5
    Scales in K(R) at the End of a Weak Gap.J. R. Steel - 2008 - Journal of Symbolic Logic 73 (2):369 - 390.
  8.  11
    Fine Structure for Tame Inner Models.E. Schimmerling & J. R. Steel - 1996 - Journal of Symbolic Logic 61 (2):621-639.
  9.  11
    Local Kc Constructions.J. R. Steel - 2007 - Journal of Symbolic Logic 72 (3):721 - 737.
  10.  9
    Comparison of Fine Structural Mice Via Coarse Iteration.F. Schlutzenberg & J. R. Steel - 2014 - Archive for Mathematical Logic 53 (5-6):539-559.
    Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} be a fine structural mouse. Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} be a fully backgrounded L[E]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L[\mathbb{E}]}$$\end{document}-construction computed inside an iterable coarse premouse S. We describe a process comparing M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} with D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document}, through forming iteration trees on M\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark