22 found
Order:
  1. Proofs and Types.Jean-Yves Girard - 1989 - Cambridge University Press.
     
    Export citation  
     
    Bookmark   39 citations  
  2.  15
    Π12-Logic, Part 1: Dilators.Jean-Yves Girard - 1981 - Annals of Mathematical Logic 21 (2-3):75-219.
  3. Linear Logic: Its Syntax and Semantics.Jean-Yves Girard - 1995 - In Jean-Yves Girard, Yves Lafont & Laurent Regnier (eds.), Advances in Linear Logic. Cambridge University Press. pp. 222--1.
     
    Export citation  
     
    Bookmark   25 citations  
  4.  33
    Proof Theory and Logical Complexity.Helmut Pfeifer & Jean-Yves Girard - 1989 - Journal of Symbolic Logic 54 (4):1493.
  5.  22
    On the Unity of Logic.Jean-Yves Girard - 1993 - Annals of Pure and Applied Logic 59 (3):201-217.
    We present a single sequent calculus common to classical, intuitionistic and linear logics. The main novelty is that classical, intuitionistic and linear logics appear as fragments, i.e. as particular classes of formulas and sequents. For instance, a proof of an intuitionistic formula A may use classical or linear lemmas without any restriction: but after cut-elimination the proof of A is wholly intuitionistic, what is superficially achieved by the subformula property and more deeply by a very careful treatment of structural rules. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  6.  26
    Set Recursion and Πhalf-Logic.Jean-Yves Girard & Dag Normann - 1985 - Annals of Pure and Applied Logic 28 (3):255-286.
  7.  26
    From Foundations to Ludics.Jean-Yves Girard - 2003 - Bulletin of Symbolic Logic 9 (2):131-168.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  31
    Between Logic and Quantic: A Tract.Jean-Yves Girard - 2004 - In Thomas Ehrhard (ed.), Linear Logic in Computer Science. Cambridge University Press. pp. 316--346.
  9.  33
    Introduction To?2 1 -Logic.Jean-Yves Girard - 1985 - Synthese 62 (2):191-216.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  10.  21
    Normal Functors, Power Series and Lambda-Calculus.Jean-Yves Girard - 1988 - Annals of Pure and Applied Logic 37 (2):129.
  11. A Result on Implications of Σ1-Sentences and its Application to Normal Form Theorems.Jean-Yves Girard & Peter Päppinghaus - 1981 - Journal of Symbolic Logic 46 (3):634 - 642.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  12.  22
    Introduction to ?2 1 -Logic.Jean-Yves Girard - 1985 - Synthese 62 (2):191-216.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13.  31
    Advances in Linear Logic.Jean-Yves Girard, Yves Lafont & Laurent Regnier (eds.) - 1995 - Cambridge University Press.
    Linear logic, introduced in 1986 by J.-Y. Girard, is based upon a fine grain analysis of the main proof-theoretical notions of logic. The subject develops along the lines of denotational semantics, proof nets and the geometry of interaction. Its basic dynamical nature has attracted computer scientists, and various promising connections have been made in the areas of optimal program execution, interaction nets and knowledge representation. This book is the refereed proceedings of the first international meeting on linear logic held at (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  33
    2001 Annual Meeting of the Association for Symbolic Logic.Joan Feigenbaum, Haim Gaifman, Jean-Yves Girard, C. Ward Henson, Denis Hirschfeldt, Carl G. Jockusch Jr, Saul Kripke, Salma Kuhlmann, John C. Mitchell & Ernest Schimmerling - 2001 - Bulletin of Symbolic Logic 7 (3):420-435.
  15.  48
    Some Uses of Dilators in Combinatorial Problems. II.V. Michele Abrusci, Jean-Yves Girard & Jacques van de Wiele - 1990 - Journal of Symbolic Logic 55 (1):32 - 40.
    We study increasing F-sequences, where F is a dilator: an increasing F-sequence is a sequence (indexed by ordinal numbers) of ordinal numbers, starting with 0 and terminating at the first step x where F(x) is reached (at every step x + 1 we use the same process as in decreasing F-sequences, cf. [2], but with "+ 1" instead of "- 1"). By induction on dilators, we shall prove that every increasing F-sequence terminates and moreover we can determine for every dilator (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  16.  27
    Functors and Ordinal Notations. I: A Functorial Construction of the Veblen Hierarchy.Jean-Yves Girard & Jacqueline Vauzeilles - 1984 - Journal of Symbolic Logic 49 (3):713-729.
  17. Multiplicatives.Jean-Yves Girard - 1987 - In G. Lolli (ed.), Logic and Computer Science: New Trends and Applications. Rosenberg & Sellier. pp. 11--34.
    No categories
     
    Export citation  
     
    Bookmark   2 citations  
  18.  9
    Functors and Ordinal Notations. II: A Functorial Construction of the Bachmann Hierarchy.Jean-Yves Girard & Jacqueline Vauzeilles - 1984 - Journal of Symbolic Logic 49 (4):1079 - 1114.
  19.  21
    Logic: Its Syntax and Semantics.Jean-Yves Girard - 1995 - In Jean-Yves Girard, Yves Lafont & Laurent Regnier (eds.), Advances in Linear Logic. Cambridge University Press.
    Direct download  
     
    Export citation  
     
    Bookmark  
  20.  25
    Embeddability of Ptykes.Jean-Yves Girard & Dag Normann - 1992 - Journal of Symbolic Logic 57 (2):659-676.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  21. 2003 European Summer Meeting of the Association for Symbolic Logic Logic Colloquim'03.Michael Benedikt, Stevo Todorcevic, Alexandru Baltag, Howard Becker, Matthew Foreman, Jean-Yves Girard, Martin Grohe, Peter T. Johnstone, Simo Knuuttila & Menachem Kojman - 2004 - Bulletin of Symbolic Logic 10 (2).
  22. Les premiers récursivement inaccessible et Mahlo et la théorie des dilatateurs.Jacqueline Vauzeilles & Jean-Yves Girard - 1985 - Archive for Mathematical Logic 24:167-191.
    Dans cet article, on utilise la théorie des dilatateurs pour décrire les premiers récursivement inaccessible et Mahlo.
    No categories
    Translate
     
     
    Export citation  
     
    Bookmark