7 found
Order:
  1.  23
    Uniformly Defining P-Henselian Valuations.Franziska Jahnke & Jochen Koenigsmann - 2015 - Annals of Pure and Applied Logic 166 (7-8):741-754.
  2.  13
    Definable Henselian Valuations.Franziska Jahnke & Jochen Koenigsmann - 2015 - Journal of Symbolic Logic 80 (1):85-99.
  3.  9
    AN EXISTENTIAL ∅-DEFINITION OF $FQ [[T]]$ IN $FQ \Left$.Will Anscombe & Jochen Koenigsmann - 2014 - Journal of Symbolic Logic 79 (4):1336-1343.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  39
    Defining Transcendentals in Function Fields.Jochen Koenigsmann - 2002 - Journal of Symbolic Logic 67 (3):947-956.
    Given any field K, there is a function field F/K in one variable containing definable transcendentals over K, i.e., elements in F \ K first-order definable in the language of fields with parameters from K. Hence, the model-theoretic and the field-theoretic relative algebraic closure of K in F do not coincide. E.g., if K is finite, the model-theoretic algebraic closure of K in the rational function field K(t) is K(t). For the proof, diophantine $\emptyset-definability$ of K in F is established (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  3
    An Existential ∅-Definition of In.Will Anscombe & Jochen Koenigsmann - 2014 - Journal of Symbolic Logic 79 (4):1336-1343.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    Nijmegen, The Netherlands July 27–August 2, 2006.Rodney Downey, Ieke Moerdijk, Boban Velickovic, Samson Abramsky, Marat Arslanov, Harvey Friedman, Martin Goldstern, Ehud Hrushovski, Jochen Koenigsmann & Andy Lewis - 2007 - Bulletin of Symbolic Logic 13 (2).
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  17
    Schlanke Körper (Slim fields).Markus Junker & Jochen Koenigsmann - 2010 - Journal of Symbolic Logic 75 (2):481-500.
    We examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example, they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
    Direct download (8 more)  
    Translate
     
     
    Export citation  
     
    Bookmark