This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our current understanding of (...) the profound nature of quantum concepts. First edition Hb (1987): 0-521-33495-0 First edition Pb (1988): 0-521-36869-3. (shrink)
This third edition, now available in paperback, is a follow up to the author's classic Boolean-Valued Models and Independence Proofs in Set Theory. It provides an exposition of some of the most important results in set theory obtained in the 20th century: the independence of the continuum hypothesis and the axiom of choice.
The usual meaning of the word continuous is “unbroken” or “uninterrupted”: thus a continuous entity —a continuum—has no “gaps.” We commonly suppose that space and time are continuous, and certain philosophers have maintained that all natural processes occur continuously: witness, for example, Leibniz's famous apothegm natura non facit saltus—“nature makes no jump.” In mathematics the word is used in the same general sense, but has had to be furnished with increasingly precise definitions. So, for instance, in the later 18th century (...) continuity of a function was taken to mean that infinitesimal changes in the value of the argument induced infinitesimal changes in the value of the function. With the abandonment of infinitesimals in the 19th century this definition came to be replaced by one employing the more precise concept of limit. (shrink)
Summarya) Bell tries to formulate more explicitly a notion of “local causality”: correlations between physical events in different space‐time regions should be explicable in terms of physical events in the overlap of the backward light cones. It is shown that ordinary relativistic quantum field theory is not locally causal in this sense, and cannot be embedded in a locally causal theory.b) Clauser, Home and Shimony criticize several steps in Bell's argument that any theory of local “beables” is incompatible with quantum (...) mechanics. It is contended that the Clauser‐Horne derivation of a Bell‐type inequality circumvents his weak steps. The Clauser‐Horne derivation must assume that there are no undetected correlations between choices of controllable variables in two space‐like separated regions. Methodological considerations support this assumption.c) In response to criticism by Shimony, Home, and Clauser, Bell tries to clarify the argument of “The theory of local beables”, and to defend as permissible the hypothesis of free variables.d) Bell's reply to an earlier criticism by Shimony, Clauser, and Home is answered. The convergence of Bell's position towards theirs is noted. (shrink)
The principle of set theory known as the Axiom of Choice has been hailed as “probably the most interesting and, in spite of its late appearance, the most discussed axiom of mathematics, second only to Euclid's axiom of parallels which was introduced more than two thousand years ago” (Fraenkel, Bar-Hillel & Levy 1973, §II.4). The fulsomeness of this description might lead those unfamiliar with the axiom to expect it to be as startling as, say, the Principle of the Constancy of (...) the Velocity of Light or the Heisenberg Uncertainty Principle. But in fact the Axiom of Choice as it is usually stated appears humdrum, even self-evident. For it amounts to nothing more than the claim that, given any collection of mutually disjoint nonempty sets, it is possible to assemble a new set — a transversal or choice set — containing exactly one element from each member of the given collection. Nevertheless, this seemingly innocuous principle has far-reaching mathematical consequences — many indispensable, some startling — and has come to figure prominently in discussions on the foundations of mathematics. It (or its equivalents) have been employed in countless mathematical papers, and a number of monographs have been exclusively devoted to it. (shrink)
Hermann Weyl, one of the twentieth century's greatest mathematicians, was unusual in possessing acute literary and philosophical sensibilities—sensibilities to which he gave full expression in his writings. In this paper I use quotations from these writings to provide a sketch of Weyl's philosophical orientation, following which I attempt to elucidate his views on the mathematical continuum, bringing out the central role he assigned to intuition.
The centrality of the whole/part relation in mathematics is demonstrated through the presentation and analysis of examples from algebra, geometry, functional analysis,logic, topology and category theory.
IN THEIR WELL-KNOWN PAPER, Kochen and Specker (1967) introduce the concept of partial Boolean algebra (pBa) and show that certain (finitely generated) partial Boolean algebras arising in quantum theory fail to possess morphisms to any Boolean algebra (we call such pBa's intractable in the sequel). In this note we begin by discussing partial..
Traditionally, expressions in formal systems have been regarded as signifying finite inscriptions which are—at least in principle—capable of actually being written out in primitive notation. However, the fact that (first-order) formulas may be identified with natural numbers (via "Gödel numbering") and hence with finite sets makes it no longer necessary to regard formulas as inscriptions, and suggests the possibility of fashioning "languages" some of whose formulas would be naturally identified as infinite sets . A "language" of this kind is called (...) an infinitary language : in this article I discuss those infinitary languages which can be obtained in a straightforward manner from first-order languages by allowing conjunctions, disjunctions and, possibly, quantifier sequences, to be of infinite length. In the course of the discussion it will be seen that, while the expressive power of such languages far exceeds that of their finitary (first-order) counterparts, very few of them possess the "attractive" features (e.g., compactness and completeness) of the latter. Accordingly, the infinitary languages that do in fact possess these features merit special attention. (shrink)
This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, (...) I have elected to offer detailed technical presentations of just a few important instances. (shrink)
Logical Options introduces the extensions and alternatives to classical logic which are most discussed in the philosophical literature: many-sorted logic, second-order logic, modal logics, intuitionistic logic, three-valued logic, fuzzy logic, and free logic. Each logic is introduced with a brief description of some aspect of its philosophical significance, and wherever possible semantic and proof methods are employed to facilitate comparison of the various systems. The book is designed to be useful for philosophy students and professional philosophers who have learned some (...) classical first-order logic and would like to learn about other logics important to their philosophical work. (shrink)
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of (...) Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal. (shrink)
This paper treats some of the issues raised by Putnam's discussion of, and claims for, quantum logic, specifically: that its proposal is a response to experimental difficulties; that it is a reasonable replacement for classical logic because its connectives retain their classical meanings, and because it can be derived as a logic of tests. We argue that the first claim is wrong (1), and that while conjunction and disjunction can be considered to retain their classical meanings, negation crucially does not. (...) The argument is conducted via a thorough analysis of how the meet, join and complementation operations are defined in the relevant logical structures, respectively Boolean- and ortholattices (3). Since Putnam wishes to reinstate a realist interpretation of quantum mechanics, we ask how quantum logic can be a logic of realism. We show that it certainly cannot be a logic of bivalence realism (i.e., of truth and falsity), although it is consistent with some form of ontological realism (4). Finally, we show that while a reasonable explication of the idealized notion of test yields interesting mathematical structure, it by no means yields the rich ortholattice structure which Putnam (following Finkelstein) seeks. (shrink)
This paper is concerned with Wittgenstein's early doctrine of the independence of elementary propositions. Using the notion of a free generator for a logical calculus–a concept we claim was anticipated by Wittgenstein–we show precisely why certain difficulties associated with his doctrine cannot be overcome. We then show that Russell's version of logical atomism–with independent particulars instead of elementary propositions–avoids the same difficulties.
In what seems to have been his last paper, Insight and Reflection (1954), Hermann Weyl provides an illuminating sketch of his intellectual development, and describes the principal influences—scientific and philosophical—exerted on him in the course of his career as a mathematician. Of the latter the most important in the earlier stages was Husserl’s phenomenology. In Weyl’s work of 1918-22 we find much evidence of the great influence Husserl’s ideas had on Weyl’s philosophical outlook—one need merely glance through the pages of (...) Space-Time-Matter or The Continuum to see it. Witness, for example, the following passages from the former. (shrink)
We investigate Hilbert’s varepsilon -calculus in the context of intuitionistic type theories, that is, within certain systems of intuitionistic higher-order logic. We determine the additional deductive strength conferred on an intuitionistic type theory by the adjunction of closed varepsilon -terms. We extend the usual topos semantics for type theories to the varepsilon -operator and prove a completeness theorem. The paper also contains a discussion of the concept of “partially defined‘ varepsilon -term. MSC: 03B15, 03B20, 03G30.
is a presentation of mathematics in terms of the fundamental concepts of transformation, and composition of transformations. While the importance of these concepts had long been recognized in algebra (for example, by Galois through the idea of a group of permutations) and in geometry (for example, by Klein in his Erlanger Programm), the truly universal role they play in mathematics did not really begin to be appreciated until the rise of abstract algebra in the 1930s. In abstract algebra the idea (...) of transformation of structure (homomorphism) was central from the beginning, and it soon became apparent to algebraists that its most important concepts and constructions were in fact formulable in terms of that idea alone. Thus emerged the view that the essence of a mathematical structure is to be sought not in its internal constitution, but rather in the nature of its relationships with other structures of the same kind, as manifested through the network of transformations. This idea has achieved its fullest expression in category theory, an axiomatic framework within which the notions of transformation (as morphism or arrow) and composition (and also structure, as object) are fundamental, that is, are not defined in terms of anything else. (shrink)
then E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map ν be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., (...) will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory3, the following.. (shrink)
A weak form of intuitionistic set theory WST lacking the axiom of extensionality is introduced. While WST is too weak to support the derivation of the law of excluded middle from the axiom of choice, we show that bee.ng up WST with moderate extensionality principles or quotient sets enables the derivation to go through.
The relation ≤ on R is defined by a ≤ b ⇔ ¬b < a. The open interval (a, b) and closed interval [a, b] are defined as usual, viz. (a, b) = {x: a < x < b} and [a, b] = {x: a ≤ x ≤ b}; similarly for half-open, half-closed, and unbounded intervals.
If we imagine a chess-board with alternate blue and red squares, then this is something in which the individual red and blue areas allow themselves to be distinguished from each other in juxtaposition, and something similar holds also if we imagine each of the squares divided into four smaller squares also alternating between these two colours. If, however, we were to continue with such divisions until we had exceeded the boundary of noticeability for the individual small squares which result, then (...) it would no longer be possible to apprehend the individual red and blue areas in their respective positions. But would we then see nothing at all? Not in the least; rather we would see the whole chessboard as violet, i.e. apprehend it as something that participates simultaneously in red and blue. (shrink)
ABSTRACT: It is characteristic of a continuum that it be “all of one piece”, in the sense of being inseparable into two (or more) disjoint nonempty parts. By taking “part” to mean open (or closed) subset of the space, one obtains the usual topological concept of connectedness . Thus a space S is defined to be connected if it cannot be partitioned into two disjoint nonempty open (or closed) subsets – or equivalently, given any partition of S into two open (...) (or closed) subsets, one of the members of the partition must be empty. This holds, for example, for the space R of real numbers and for all of its open or closed intervals. Now a truly radical condition results from taking the idea of being “all of one piece” literally, that is, if it is taken to mean inseparability into any disjoint nonempty parts, or subsets, whatsoever . A space S satisfying this condition is called cohesive or indecomposable. While the law of excluded middle of classical logic reduces indecomposable spaces to the trivial empty space and one-point spaces, the use of intuitionistic logic makes it possible not only for nontrivial cohesive spaces to exist, but for every connected space to be cohesive.In this paper I describe the philosophical background to cohesiveness as well as some of the ways in which the idea is modelled in contemporary mathematics. (shrink)
I show the inadequacy of whitrow's recent argument ("british journal for the philosophy of science", Volume 29, Pages 39-45) against the possibility of an infinite past. I argue that it is impossible to prove "a priori" the non-Existence of an infinite past or future.
In this paper the view is developed that classes should not be understood as individuals, but, rather, as "classes as many" of individuals. To correlate classes with individuals "labelling" and "colabelling" functions are introduced and sets identified with a certain subdomain of the classes on which the labelling and colabelling functions are mutually inverse. A minimal axiomatization of the resulting system is formulated and some of its extensions are related to various systems of set theory, including nonwellfounded set theories.
Call a family F of subsets of a set E inductive if ∅ ∈ F and F is closed under unions with disjoint singletons, that is, if ∀X∈F ∀x∈E–X(X ∪ {x} ∈ F]. A Frege structure is a pair (E.
It is shown by Parsons [2] that the first-order fragment of Frege's logical system in the Grundgesetze der Arithmetic is consistent. In this note we formulate and prove a stronger version of this result for arbitrary first-order theories. We also show that a natural attempt to further strengthen our result runs afoul of Tarski's theorem on the undefinability of truth.
In the present paper the concept of a covering is presented and developed. The relationship between cover schemes, frames (complete Heyting algebras), Kripke models, and frame-valued set theory is discussed. Finally cover schemes and framevalued set theory are applied in the context of Markopoulou’s account of discrete spacetime as sets “evolving” over a causal set. We observe that Markopoulou’s proposal may be effectively realized by working within an appropriate frame-valued model of set theory. We go on to show that, within (...) this framework, cover schemes may be used to force certain conditions to prevail in the associated models: for example, rendering the universe timeless, obliterating a given event or forcing it to become the universe’s “beginning”. (shrink)
In 1949 the great logician Kurt Gödel constructed the first mathematical models of the universe in which travel into the past is, in theory at least, possible. Within the framework of Einstein’s general theory of relativity Gödel produced cosmological solutions to Einstein’s field equations which contain closed time-like curves, that is, curves in spacetime which, despite being closed, still represent possible paths of bodies. An object moving along such a path would travel back into its own past, to the very (...) moment at which it “began” the journey. More generally, Gödel showed that, in his “universe”, for any two points P and Q on a body’s track through spacetime, such that P temporally precedes Q, there is a timelike curve linking P and Q on which Q temporally precedes P. This means that, in principle at least, one could board a “time machine” and travel to any point of the past. Gödel inferred, in consonance with the views of Parmenides, Kant and the modern idealists, that under these circumstances there could be no such thing as an objective lapse of time, that time or, more generally, change, is an illusion arising from our special mode of perception. For consider an observer initially at point P. At point Q he boards a time machine and travels back to point P, taking time t′′ to do so. In that case, according to his own clock, t′ – t + t′′ > 0 seconds have elapsed, and yet an identical clock left at P would show that 0 seconds have elapsed. In short, there has been no “objective” lapse of time at all. Gödel remarks that in his universe this situation is typical: for every possible definition of an “objective” time one could travel into regions which are past according to that definition. He continues. (shrink)
The principle of set theory known as the Axiom of Choice (AC) has been hailed as “probably the most interesting and, in spite of its late appearance, the most discussed axiom of mathematics, second only to Euclid’s axiom of parallels which was introduced more than two thousand years ago”1 It has been employed in countless mathematical papers, a number of monographs have been exclusively devoted to it, and it has long played a prominently role in discussions on the foundations of (...) mathematics. (shrink)
Trait emotional intelligence (trait EI) covers a wide range of self-perceived skills and personality dispositions such as motivation, confidence, optimism, peer relations and coping with stress. In the last few years, there has been a growing awareness that social and emotional factors play an important part in students? academic success and it has been claimed that those with high scores on a trait EI measure perform better. This research investigated whether scores on a questionnaire measure of trait EI were related (...) to school performance in a sample of British pupils. Results showed that high performing students had higher trait EI scores than low performing students and that some aspects of trait EI (motivation and low impulsivity) as well as total trait EI were significant predictors of academic achievement after controlling for prior attainment at school. Therefore, initiatives to develop the emotional and social abilities of schoolchildren might be worthwhile and more effective than concentrating solely on teaching and curriculum activities. (shrink)
Some aspects of the theory of Boolean algebras and distributive lattices–in particular, the Stone Representation Theorems and the properties of filters and ideals–are analyzed in a constructive setting.
The opposed concepts of continuity and discreteness have figured prominently in the development of mathematics, and have also commanded the attention of philosophers. Continuous entities may be characterized by the fact that they can be divided indefinitely without altering their essential nature. So, for instance, the water in a bucket may be indefinitely halved and yet remain water. (For the purposes of illustration I ignore the atomic nature of matter which has been established by modern physics.) Discrete entities, on the (...) other hand, typically cannot be divided without effecting a change in their nature: half a wheel is plainly no longer a wheel. Thus we have two contrasting properties: on the one hand, the property of being indivisible, separate or discrete, and, on the other, the property of being indefinitely divisible and continuous although not actually divided into parts. (shrink)
Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy lies in the details of setting up and checking the properties of a coding system representing the syntax of an object language (typically, that of arithmetic) within that same language. These details are seldom illuminating and tend to obscure the core of the argument. For this reason a number of efforts have been made to present the essentials of the proofs of Gödel’s theorems without getting (...) mired in syntactic or computational details. One of the most important of these efforts was made by Löb [8] in connection with his analysis of sentences asserting their own provability. Löb formulated three conditions (now known as the Hilbert-Bernays-Löb derivability conditions), on the provability predicate in a formal system which are jointly sufficient to yield the Gödel’s second incompleteness theorem for it. A key role in Löb’s analysis is played by (a special case of) what later became known as the diagonalization or fixed point property of formal systems, a property which had already, in essence, been exploited by Gödel in his original proofs of the incompleteness theorems. The fixed point property plays a central role in Lawvere’s [7] category-theoretic account of incompleteness phenomena (see also [10]). Incompleteness theorems have also been subjected to intensive investigation within the framework of modal logic (see, e.g.[4], [5]). In this formulation the modal operator takes up the role previously played by the provability predicate, and the derivability conditions on the latter are translated into algebraic conditions (the so-called GL, i.e., Gödel–Löb, conditions) on the former. My purpose here is to present a framework for incompleteness phenomena, fully compatible with intuitionistic or constructive principles, in which the idea of a coding system is retained, only in a 2 simple, but very general form, a form wholly free of syntactical notions. As codes we shall take the elements of an arbitrary given nonempty set, possibly, but not necessarily, the set of natural numbers.. (shrink)
THE CLOSE CONNECTION BETWEEN mathematics and philosophy has long been recognized by practitioners of both disciplines. The apparent timelessness of mathematical truth, the exactness and objective nature of its concepts, its applicability to the phenomena of the empirical world—explicating such facts presents philosophy with some of its subtlest problems. We shall discuss some of the attempts made by philosophers and mathematicians to explain the nature of mathematics. We begin with a brief presentation of the views of four major classical philosophers: (...) Plato, Aristotle, Leibniz, and Kant. We conclude with a more detailed discussion of the three “schools” of mathematical philosophy which have emerged in the twentieth century: Logicism, Formalism, and Intuitionism. (shrink)
In this paper I reflect on the nature of mathematical beauty, and examine the connections between mathematics and the arts. I employ Plutarch’s distinction between the intelligible and the sensible, to compare the beauty of mathematics with the beauties of music, poetry and painting. While the beauty of mathematics is almost exclusively intelligible, and the beauties of these arts primarily sensible, it is pointed out that the latter share with mathematics a certain kind of intelligible beauty. The paper also contains (...) reflections on the formal beauty and timelessness of mathematics, beauty as richness flowing from simplicity, form and content in mathematics, and mathematics and fiction. It concludes with some remarks on the question of why mathematical beauty is so little appreciated by non-mathematicians. (shrink)
THE CLOSE CONNECTION BETWEEN mathematics and philosophy has long been recognized by practitioners of both disciplines. The apparent timelessness of mathematical truth, the exactness and objective nature of its concepts, its applicability to the phenomena of the empirical world— explicating such facts presents philosophy with some of its subtlest problems. Let me begin by reminding you of some celebrated past attempts made by philosophers and mathematicians to explicate the nature of mathematics.