Adaptation to right-shifting prisms improves left neglect for mental number line bisection. This study examined whether adaptation affects the mental number line in normal participants. Thirty-six participants completed a mental number line task before and after adaptation to either: left-shifting prisms, right-shifting prisms or control spectacles that did not shift the visual scene. Participants viewed number triplets (e.g. 16, 36, 55) and determined whether the numerical distance was greater on the left or right side of the inner number. Participants demonstrated (...) a leftward bias (i.e. overestimated the length occupied by numbers located on the left side of the number line) that was consistent with the effect of pseudoneglect. The leftward bias was corrected by a short period of visuomotor adaptation to left-shifting prisms, but remained unaffected by adaptation to right-shifting prisms and control spectacles. The findings demonstrate that a simple visuomotor task alters the representation of space on the mental number line in normal participants. (shrink)
While explaining a large proportion of any variance, accounts of the speed and accuracy of targetting movements use techniques (e.g., log transforms) that typically reduce variability before ''explaining'' the data. Therefore the predictive power of such accounts are important. We consider whether Plamondon's model can account for kinematics of targetting movements of clinical populations.
An intervening gestural stage in language evolution, though seductive, is ultimately redundant, and is not necessarily supported by modern human or chimp behaviour. The findings and arguments offered from mirror neurones, anatomy, and lateralization are capable of other interpretations, and the manipulative dextrality of chimps is under-recognized. While language certainly possesses certain unique properties, its roots are ancient.