5 found
Order:
Disambiguations
Joseph R. Shoenfield [5]Joseph Robert Shoenfield [2]
  1.  30
    Mathematical Logic.Joseph Robert Shoenfield - 1967 - Reading, MA, USA: Reading, Mass., Addison-Wesley Pub. Co..
    8.3 The consistency proof -- 8.4 Applications of the consistency proof -- 8.5 Second-order arithmetic -- Problems -- Chapter 9: Set Theory -- 9.1 Axioms for sets -- 9.2 Development of set theory -- 9.3 Ordinals -- 9.4 Cardinals -- 9.5 Interpretations of set theory -- 9.6 Constructible sets -- 9.7 The axiom of constructibility -- 9.8 Forcing -- 9.9 The independence proofs -- 9.10 Large cardinals -- Problems -- Appendix The Word Problem -- Index.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   201 citations  
  2.  52
    The Problem of Predicativity.Joseph R. Shoenfield - 1961 - In Bar-Hillel, Yehoshua & [From Old Catalog] (eds.), Essays on the Foundations of Mathematics. Jerusalem, Magnes Press, Hebrew University;. pp. 132--139.
  3.  32
    Degrees of Unsolvability.Joseph Robert Shoenfield - 1971 - New York: American Elsevier.
  4.  45
    Axioms of Set Theory.Joseph R. Shoenfield - 1977 - In Jon Barwise & H. Jerome Keisler (eds.), Handbook of Mathematical Logic. North-Holland Pub. Co.. pp. 90.
  5. A Relative Consistency Proof.Joseph R. Shoenfield - 1954 - Journal of Symbolic Logic 19 (1):21-28.
    LetCbe an axiom system formalized within the first order functional calculus, and letC′ be related toCas the Bernays-Gödel set theory is related to the Zermelo-Fraenkel set theory. Ilse Novak [5] and Mostowski [8] have shown that, ifCis consistent, thenC′ is consistent. Mostowski has also proved the stronger result that any theorem ofC′ which can be formalized inCis a theorem ofC.The proofs of Novak and Mostowski do not provide a direct method for obtaining a contradiction inCfrom a contradiction inC′. We could, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations