We study the expressive power of open formulas of dependence logic introduced in Väänänen [Dependence logic (Vol. 70 of London Mathematical Society Student Texts), 2007]. In particular, we answer a question raised by Wilfrid Hodges: how to characterize the sets of teams definable by means of identity only in dependence logic, or equivalently in independence friendly logic.
Dependence logic, introduced in Väänänen [11], cannot be axiomatized. However, first-order consequences of dependence logic sentences can be axiomatized, and this is what we shall do in this paper. We give an explicit axiomatization and prove the respective Completeness Theorem.
We show that for any pair $\phi$ and $\psi$ of contradictory formulas of dependence logic there is a formula $\theta$ of the same logic such that $\phi\equiv\theta$ and $\psi\equiv\neg\theta$. This generalizes a result of Burgess.
Directed acyclic graphs (DAGs) constitute a qualitative representation for conditional independence (CI) properties of a probability distribution. It is known that every CI statement implied by the topology of a DAG is witnessed over it under a graph-theoretic criterion of d-separation. Alternatively, all such implied CI statements are derivable from the local independencies encoded by a DAG using the so-called semi-graphoid axioms. We consider Labeled Directed Acyclic Graphs (LDAGs) modeling graphically scenarios exhibiting context-specific independence (CSI). Such CSI statements are modeled (...) by labeled edges, where labels encode contexts in which the edge vanishes. We study the problem of identifying all independence statements implied by the structure and the labels of an LDAG. We show that this problem is coNP-hard for LDAGs and formulate a sound extension of the semi-graphoid axioms for the derivation of such implied independencies. Finally we connect our study to certain qualitative versions of independence ubiquitous in database theory and teams semantics. (shrink)
We consider collective quantification in natural language. For many years the common strategy in formalizing collective quantification has been to define the meanings of collective determiners, quantifying over collections, using certain type-shifting operations. These type-shifting operations, i.e., lifts, define the collective interpretations of determiners systematically from the standard meanings of quantifiers. All the lifts considered in the literature turn out to be definable in second-order logic. We argue that second-order definable quantifiers are probably not expressive enough to formalize all collective (...) quantification in natural language. (shrink)
We characterize the expressive power of extensions of Dependence Logic and Independence Logic by monotone generalized quanti ers in terms of quanti er extensions of existential second-order logic.
We study second order generalized quantifiers on finite structures. One starting point of this research has been the notion of definability of Lindström quantifiers. We formulate an analogous notion for second order generalized quantifiers and study definability of second order generalized quantifiers in terms of Lindström quantifiers.
We study second order generalized quantifiers on finite structures. One starting point of this research has been the notion of definability of Lindström quantifiers. We formulate an analogous notion for second order generalized quantifiers and study definability of second order generalized quantifiers in terms of Lindström quantifiers.
We study the extension of dependence logic \ by a majority quantifier \ over finite structures. We show that the resulting logic is equi-expressive with the extension of second-order logic by second-order majority quantifiers of all arities. Our results imply that, from the point of view of descriptive complexity theory, \\) captures the complexity class counting hierarchy. We also obtain characterizations of the individual levels of the counting hierarchy by fragments of \\).
Dependence logic and its many variants are new logics that aim at establishing a unified logical theory of dependence and independence underlying seemingly unrelated subjects. The area of dependence logic has developed rapidly in the past few years. We will give a short introduction to dependence logic and review some of the recent developments in the area.
We study definability of second-order generalized quantifiers. We show that the question whether a second-order generalized quantifier $\sQ_1$ is definable in terms of another quantifier $\sQ_2$, the base logic being monadic second-order logic, reduces to the question if a quantifier $\sQ^{\star}_1$ is definable in $\FO(\sQ^{\star}_2,<,+,\times)$ for certain first-order quantifiers $\sQ^{\star}_1$ and $\sQ^{\star}_2$. We use our characterization to show new definability and non-definability results for second-order generalized quantifiers. In particular, we show that the monadic second-order majority quantifier $\most^1$ is not definable (...) in second-order logic. (shrink)
In recent years, mathematical logic has developed in many directions, the initial unity of its subject matter giving way to a myriad of seemingly unrelated areas. The articles collected here, which range from historical scholarship to recent research in geometric model theory, squarely address this development. These articles also connect to the diverse work of Väänänen, whose ecumenical approach to logic reflects the unity of the discipline.
In this article we study linear temporal logics with team semantics that are novel logics for defining hyperproperties. We define Kamp-type translations of these logics into fragments of first-order team logic and second-order logic. We also characterize the expressive power and the complexity of model-checking and satisfiability of team logic and second-order logic by relating them to second- and third-order arithmetic. Our results set in a larger context the recent results of Lück showing that the extension of TeamLTL by the (...) Boolean negation is highly undecidable under the so-called synchronous semantics. We also study stutter-invariant fragments of extensions of TeamLTL. (shrink)
We study definability of second order generalized quantifiers on finite structures. Our main result says that for every second order type t there exists a second order generalized quantifier of type t which is not definable in the extension of second order logic by all second order generalized quantifiers of types lower than t.