70 found
Order:
Disambiguations
Julia F. Knight [60]Julia Knight [21]Julian Knight [1]
See also
  1.  32
    Generic Copies of Countable Structures.Chris Ash, Julia Knight, Mark Manasse & Theodore Slaman - 1989 - Annals of Pure and Applied Logic 42 (3):195-205.
  2.  24
    Degrees Coded in Jumps of Orderings.Julia F. Knight - 1986 - Journal of Symbolic Logic 51 (4):1034-1042.
  3.  33
    Enumerations in Computable Structure Theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  4.  21
    Investigating the Impact of a Musical Intervention on Preschool Children’s Executive Function.Alice Bowmer, Kathryn Mason, Julian Knight & Graham Welch - 2018 - Frontiers in Psychology 9.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  43
    Isomorphism Relations on Computable Structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6.  17
    Scott Sentences for Certain Groups.Julia F. Knight & Vikram Saraph - 2018 - Archive for Mathematical Logic 57 (3-4):453-472.
    We give Scott sentences for certain computable groups, and we use index set calculations as a way of checking that our Scott sentences are as simple as possible. We consider finitely generated groups and torsion-free abelian groups of finite rank. For both kinds of groups, the computable ones all have computable \ Scott sentences. Sometimes we can do better. In fact, the computable finitely generated groups that we have studied all have Scott sentences that are “computable d-\” sentence and a (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Computable Boolean Algebras.Julia F. Knight & Michael Stob - 2000 - Journal of Symbolic Logic 65 (4):1605-1623.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  8.  66
    Classification From a Computable Viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
  9. A Complete L Ω1ω-Sentence Characterizing ℵ1.Julia F. Knight - 1977 - Journal of Symbolic Logic 42 (1):59-62.
  10.  26
    Π 1 1 Relations and Paths Through.Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Richard A. Shore - 2004 - Journal of Symbolic Logic 69 (2):585-611.
  11.  6
    Coding in Graphs and Linear Orderings.Julia F. Knight, Alexandra A. Soskova & Stefan V. Vatev - 2020 - Journal of Symbolic Logic 85 (2):673-690.
    There is a Turing computable embedding $\Phi $ of directed graphs $\mathcal {A}$ in undirected graphs. Moreover, there is a fixed tuple of formulas that give a uniform effective interpretation; i.e., for all directed graphs $\mathcal {A}$, these formulas interpret $\mathcal {A}$ in $\Phi $. It follows that $\mathcal {A}$ is Medvedev reducible to $\Phi $ uniformly; i.e., $\mathcal {A}\leq _s\Phi $ with a fixed Turing operator that serves for all $\mathcal {A}$. We observe that there is a graph G (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  44
    Computable Trees of Scott Rank [Image] , and Computable Approximation.Wesley Calvert, Julia F. Knight & Jessica Millar - 2006 - Journal of Symbolic Logic 71 (1):283 - 298.
    Makkai [10] produced an arithmetical structure of Scott rank $\omega _{1}^{\mathit{CK}}$. In [9]. Makkai's example is made computable. Here we show that there are computable trees of Scott rank $\omega _{1}^{\mathit{CK}}$. We introduce a notion of "rank homogeneity". In rank homogeneous trees, orbits of tuples can be understood relatively easily. By using these trees, we avoid the need to pass to the more complicated "group trees" of [10] and [9]. Using the same kind of trees, we obtain one of rank (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  13.  86
    Barwise: Infinitary Logic and Admissible Sets.H. Jerome Keisler & Julia F. Knight - 2004 - Bulletin of Symbolic Logic 10 (1):4-36.
  14.  36
    Models of Arithmetic and Closed Ideals.Julia Knight & Mark Nadel - 1982 - Journal of Symbolic Logic 47 (4):833-840.
  15.  16
    Computable Structures in Generic Extensions.Julia Knight, Antonio Montalbán & Noah Schweber - 2016 - Journal of Symbolic Logic 81 (3):814-832.
  16.  8
    Turing Computable Embeddings.F. Knight Julia, Miller Sara & M. Vanden Boom - 2007 - Journal of Symbolic Logic 72 (3):901-918.
    In [3], two different effective versions of Borel embedding are defined. The first, called computable embedding, is based on uniform enumeration reducibility, while the second, called Turing computable embedding, is based on uniform Turing reducibility. While [3] focused mainly on computable embeddings, the present paper considers Turing computable embeddings. Although the two notions are not equivalent, we can show that they behave alike on the mathematically interesting classes chosen for investigation in [3]. We give a “Pull-back Theorem”, saying that if (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  17.  70
    Bounding Prime Models.Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight & Robert I. Soare - 2004 - Journal of Symbolic Logic 69 (4):1117 - 1142.
    A set X is prime bounding if for every complete atomic decidable (CAD) theory T there is a prime model U of T decidable in X. It is easy to see that $X = 0\prime$ is prime bounding. Denisov claimed that every $X <_{T} 0\prime$ is not prime bounding, but we discovered this to be incorrect. Here we give the correct characterization that the prime bounding sets $X \leq_{T} 0\prime$ are exactly the sets which are not $low_2$ . Recall that (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Hanf Numbers for Omitting Types Over Particular Theories.Julia F. Knight - 1976 - Journal of Symbolic Logic 41 (3):583-588.
  19.  21
    Expansions of Models and Turing Degrees.Julia Knight & Mark Nadel - 1982 - Journal of Symbolic Logic 47 (3):587-604.
  20.  10
    Models and Types of Peano's Arithmetic.Haim Gaifman, Julia F. Knight, Fred G. Abramson & Leo A. Harrington - 1983 - Journal of Symbolic Logic 48 (2):484-485.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  21.  14
    Recursive Structures and Ershov's Hierarchy.Christopher J. Ash & Julia F. Knight - 1996 - Mathematical Logic Quarterly 42 (1):461-468.
    Ash and Nerode [2] gave natural definability conditions under which a relation is intrinsically r. e. Here we generalize this to arbitrary levels in Ershov's hierarchy of Δmath image sets, giving conditions under which a relation is intrinsically α-r. e.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  22.  43
    Decidability and Computability of Certain Torsion-Free Abelian Groups.Rodney G. Downey, Sergei S. Goncharov, Asher M. Kach, Julia F. Knight, Oleg V. Kudinov, Alexander G. Melnikov & Daniel Turetsky - 2010 - Notre Dame Journal of Formal Logic 51 (1):85-96.
    We study completely decomposable torsion-free abelian groups of the form $\mathcal{G}_S := \oplus_{n \in S} \mathbb{Q}_{p_n}$ for sets $S \subseteq \omega$. We show that $\mathcal{G}_S$has a decidable copy if and only if S is $\Sigma^0_2$and has a computable copy if and only if S is $\Sigma^0_3$.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  11
    Computing Strength of Structures Related to the Field of Real Numbers.Gregory Igusa, Julia F. Knight & Noah David Schweber - 2017 - Journal of Symbolic Logic 82 (1):137-150.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  5
    Degrees of Models of True Arithmetic.David Marker, J. Stern, Julia Knight, Alistair H. Lachlan & Robert I. Soare - 1987 - Journal of Symbolic Logic 52 (2):562-563.
  25.  54
    Intrinsic Bounds on Complexity and Definability at Limit Levels.John Chisholm, Ekaterina B. Fokina, Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Sara Quinn - 2009 - Journal of Symbolic Logic 74 (3):1047-1060.
    We show that for every computable limit ordinal α, there is a computable structure A that is $\Delta _\alpha ^0 $ categorical, but not relatively $\Delta _\alpha ^0 $ categorical (equivalently. it does not have a formally $\Sigma _\alpha ^0 $ Scott family). We also show that for every computable limit ordinal a, there is a computable structure A with an additional relation R that is intrinsically $\Sigma _\alpha ^0 $ on A. but not relatively intrinsically $\Sigma _\alpha ^0 $ (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  80
    Simple and Immune Relations on Countable Structures.Sergei S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Charles F. D. McCoy - 2003 - Archive for Mathematical Logic 42 (3):279-291.
  27.  55
    Limit Computable Integer Parts.Paola D’Aquino, Julia Knight & Karen Lange - 2011 - Archive for Mathematical Logic 50 (7-8):681-695.
    Let R be a real closed field. An integer part I for R is a discretely ordered subring such that for every ${r \in R}$ , there exists an ${i \in I}$ so that i ≤ r < i + 1. Mourgues and Ressayre (J Symb Logic 58:641–647, 1993) showed that every real closed field has an integer part. The procedure of Mourgues and Ressayre appears to be quite complicated. We would like to know whether there is a simple procedure, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Nonarithmetical ℵ0-Categorical Theories with Recursive Models.Julia F. Knight - 1994 - Journal of Symbolic Logic 59 (1):106 - 112.
  29.  39
    Chains and Antichains in Partial Orderings.Valentina S. Harizanov, Carl G. Jockusch & Julia F. Knight - 2009 - Archive for Mathematical Logic 48 (1):39-53.
    We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is ${\Sigma _{1}^{1}}$ or ${\Pi _{1}^{1}}$ , and also obtain the analogous result for antichains. On the other hand, we show that every computable partial ordering which has an infinite chain must have an infinite chain that is the difference of two ${\Pi _{1}^{1}}$ sets. Our main result is that there (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  66
    Meeting of the Association for Symbolic Logic: San Antonio, 1987.Julia F. Knight - 1988 - Journal of Symbolic Logic 53 (3):1000-1006.
  31.  15
    Two Theorems on Degrees of Models of True Arithmetic.Julia Knight, Alistair H. Lachlan & Robert I. Soare - 1984 - Journal of Symbolic Logic 49 (2):425-436.
  32.  17
    Jon Barwise and John Schlipf. An Introduction to Recursively Saturated and Resplendent Models. The Journal of Symbolic Logic, Vol. 41 , Pp. 531–536.Julia F. Knight - 1982 - Journal of Symbolic Logic 47 (2):440.
  33.  10
    Prime and Atomic Models.Julia F. Knight - 1978 - Journal of Symbolic Logic 43 (3):385-393.
  34.  16
    John Gregory. Uncountable Models and Infinitary Elementary Extensions. The Journal of Symbolic Logic, Vol. 38 , Pp. 460–470.Julia F. Knight - 1982 - Journal of Symbolic Logic 47 (2):438-439.
  35. The Bulletin of Symbolic Logic Volume 11, Number 2, June 2005.Mirna Dzamonja, David M. Evans, Erich Gradel, Geoffrey P. Hellman, Denis Hirschfeldt, Julia Knight, Michael C. Laskowski, Roger Maddux, Volker Peckhaus & Wolfram Pohlers - 2005 - Bulletin of Symbolic Logic 11 (2).
  36. Meeting of the Association for Symbolic Logic.Julia F. Knight - 1988 - Journal of Symbolic Logic 53 (3):1000-1006.
  37.  7
    Constructions by Transfinitely Many Workers.Julia F. Knight - 1990 - Annals of Pure and Applied Logic 48 (3):237-259.
  38.  27
    Vassar College, 124 Raymond Avenue, Poughkeepsie, Ny 12604, Usa. In a Review, a Reference “Jsl Xliii 148,” for Example, Refers Either to the Publication Reviewed on Page 148 of Volume 43 of the Journal, or to the Review Itself (Which Contains Full Bibliographical Information for the Reviewed Publication). Analogously, a Reference “Bsl VII 376” Refers to the Review Beginning on Page 376 in Volume 7 of This Bulletin, Or. [REVIEW]David M. Evans, Erich Grädel, Geoffrey P. Hellman, Denis Hirschfeldt, Thomas J. Jech, Julia Knight, Michael C. Laskowski, Volker Peckhaus, Wolfram Pohlers & Sławomir Solecki - 2005 - Bulletin of Symbolic Logic 11 (1):37.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  39.  32
    In Memoriam: Christopher John Ash.Julia F. Knight - 1995 - Bulletin of Symbolic Logic 1 (2):202.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark  
  40. Books to Asl, Box 742, Vassar College, 124 Raymond Avenue, Poughkeepsie, Ny 12604, Usa. In a Review, a Reference “Jsl Xliii 148,” for Example, Refers Either to the Publication Reviewed on Page 148 of Volume 43 of the Journal, or to the Review Itself (Which Contains Full Bibliographical Information for the Reviewed Publication). Analogously, a Reference. [REVIEW]Mirna Dzamonja, David M. Evans, Erich Grädel, Geoffrey P. Hellman, Denis Hirschfeldt, Julia Knight, Michael C. Laskowski, Roger Maddux, Volker Peckhaus & Wolfram Pohlers - 2005 - Bulletin of Symbolic Logic 11 (2).
     
    Export citation  
     
    Bookmark  
  41.  15
    Meeting of the Association for Symbolic Logic: Notre Dame, Indiana, 1984.John Baldwin, Matt Kaufmann & Julia F. Knight - 1985 - Journal of Symbolic Logic 50 (1):284-286.
  42.  13
    Erratum To: Limit Computable Integer Parts.Paola D’Aquino, Julia Knight & Karen Lange - 2015 - Archive for Mathematical Logic 54 (3-4):487-489.
  43.  14
    Additive Structure in Uncountable Models for a Fixed Completion of P.Julia F. Knight - 1983 - Journal of Symbolic Logic 48 (3):623-628.
  44.  21
    Skolem Functions and Elementary Embeddings.Julia F. Knight - 1977 - Journal of Symbolic Logic 42 (1):94-98.
  45.  13
    Phoenix Civic Plaza, Phoenix, Arizona, January 9–10, 2004.Matthew Foreman, Steve Jackson, Julia Knight, R. W. Knight, Steffen Lempp, Françoise Point, Kobi Peterzil, Leonard Schulman, Slawomir Solecki & Carol Wood - 2004 - Bulletin of Symbolic Logic 10 (2).
    Direct download  
     
    Export citation  
     
    Bookmark  
  46.  11
    Books to ASL, Box 742, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.Julia Knight, Michael C. Laskowski, Roger Maddux, Volker Peckhaus & Wolfram Pohlers - 2004 - Bulletin of Symbolic Logic 10 (3).
  47.  14
    Saturation of Homogeneous Resplendent Models.Julia F. Knight - 1986 - Journal of Symbolic Logic 51 (1):222-224.
  48.  9
    University of California, San Diego, March 20–23, 1999.Julia F. Knight, Steffen Lempp, Toniann Pitassi, Hans Schoutens, Simon Thomas, Victor Vianu & Jindrich Zapletal - 1999 - Bulletin of Symbolic Logic 5 (3).
  49.  5
    Uniform Procedures in Uncountable Structures.Noam Greenberg, Alexander G. Melnikov, Julia F. Knight & Daniel Turetsky - 2018 - Journal of Symbolic Logic 83 (2):529-550.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  9
    Algebraic Independence.Julia F. Knight - 1981 - Journal of Symbolic Logic 46 (2):377-384.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 70