31 found
Order:
  1.  6
    Some Applications of Iterated Ultrapowers in Set Theory.Kenneth Kunen - 1970 - Annals of Mathematical Logic 1 (2):179-227.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   56 citations  
  2.  20
    Elementary Embeddings and Infinitary Combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
  3.  12
    Saturated Ideals.Kenneth Kunen - 1978 - Journal of Symbolic Logic 43 (1):65-76.
  4. On Descendingly Incomplete Ultrafilters.Kenneth Kunen & Karel Prikry - 1971 - Journal of Symbolic Logic 36 (4):650-652.
  5. The Real Line in Elementary Submodels of Set Theory.Kenneth Kunen & Franklin D. Tall - 2000 - Journal of Symbolic Logic 65 (2):683-691.
    Keywords: Elementary Submodel; Real Line; Order-Isomorphic.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  6. A Minimal Degree Which Collapses Ω.Tim Carlson, Kenneth Kunen & Arnold W. Miller - 1984 - Journal of Symbolic Logic 49 (1):298 - 300.
    We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming MA + ≠ CH, every new real constructs the collapsing map.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  7. Implicit Definability and Infinitary Languages.Kenneth Kunen - 1968 - Journal of Symbolic Logic 33 (3):446-451.
  8.  2
    Hanf Numbers for Fragments of L ∞Ω.Jon Barwise & Kenneth Kunen - 1984 - Journal of Symbolic Logic 49 (1):315-315.
  9.  15
    Descriptive Set Theory Over Hyperfinite Sets.H. Jerome Keisler, Kenneth Kunen, Arnold Miller & Steven Leth - 1989 - Journal of Symbolic Logic 54 (4):1167-1180.
    The separation, uniformization, and other properties of the Borel and projective hierarchies over hyperfinite sets are investigated and compared to the corresponding properties in classical descriptive set theory. The techniques used in this investigation also provide some results about countably determined sets and functions, as well as an improvement of an earlier theorem of Kunen and Miller.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  10.  7
    XVI. A Model for the Negation of the Axiom of Choice.Kenneth Kunen - 1973 - In A. R. D. Mathias & H. Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York: Springer Verlag. pp. 489--494.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  11.  12
    Where Ma First Fails.Kenneth Kunen - 1988 - Journal of Symbolic Logic 53 (2):429-433.
    If θ is any singular cardinal of cofinality ω 1 , we produce a forcing extension in which MA holds below θ but fails at θ. The failure is due to a partial order which splits a gap of size θ in P(ω).
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  12.  23
    The Kleene Symposium and the Summer Meeting of the Association for Symbolic Logic.John Addison, Jon Barwise, H. Jerome Keisler, Kenneth Kunen & Yiannis N. Moschovakis - 1979 - Journal of Symbolic Logic 44 (3):469-480.
  13.  18
    Annual Meeting of the Association for Symbolic Logic: Saint Louis, 1977.Jon Barwise, Kenneth Kunen & Joseph Ullian - 1978 - Journal of Symbolic Logic 43 (2):365-372.
  14. Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
  15.  19
    On a Combinatorial Property of Menas Related to the Partition Property for Measures on Supercompact Cardinals.Kenneth Kunen & Donald H. Pelletier - 1983 - Journal of Symbolic Logic 48 (2):475-481.
    T. K. Menas [4, pp. 225-234] introduced a combinatorial property χ (μ) of a measure μ on a supercompact cardinal κ and proved that measures with this property also have the partition property. We prove here that Menas' property is not equivalent to the partition property. We also show that if α is the least cardinal greater than κ such that P κ α bears a measure without the partition property, then α is inaccessible and Π 2 1 -indescribable.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  16.  4
    Carnegie Mellon University, Pittsburgh, PA May 19–23, 2004.John Baldwin, Lev Beklemishev, Michael Hallett, Valentina Harizanov, Steve Jackson, Kenneth Kunen, Angus J. MacIntyre, Penelope Maddy, Joe Miller & Michael Rathjen - 2005 - Bulletin of Symbolic Logic 11 (1).
    Direct download  
     
    Export citation  
     
    My bibliography  
  17.  10
    Gregory Trees, the Continuum, and Martin's Axiom.Kenneth Kunen & Dilip Raghavan - 2009 - Journal of Symbolic Logic 74 (2):712-720.
    We continue the investigation of Gregory trees and the Cantor Tree Property carried out by Hart and Kunen. We produce models of MA with the Continuum arbitrarily large in which there are Gregory trees, and in which there are no Gregory trees.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  18.  4
    Review: J. R. Shoenfield, Measurable Cardinals. [REVIEW]Kenneth Kunen - 1975 - Journal of Symbolic Logic 40 (1):93-94.
  19.  1
    The Kleene Symposium and the Summer Meeting of the Association for Symbolic Logic, Madison 1978.John Addison, Jon Barwise, H. Jerome Keisler, Kenneth Kunen & Yiannis N. Moschovakis - 1979 - Journal of Symbolic Logic 44 (3):469-480.
  20.  1
    Cohen Paul J.. Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York and Amsterdam 1966, Vi + 154 Pp. [REVIEW]Kenneth Kunen - 1970 - Journal of Symbolic Logic 35 (4):591-592.
  21.  1
    Enderton Herbert B.. Elements of Set Theory. Academic Press, New York, San Francisco, and London, 1977, Xiv + 279 Pp. [REVIEW]Kenneth Kunen - 1981 - Journal of Symbolic Logic 46 (1):164-165.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  22.  1
    Vopěnka P.. The Limits of Sheaves and Applications on Constructions of Models. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 189–192.Vopěnka P.. On ∇-Model of Set Theory. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 267–272.Vopěnka P.. Properties of ∇-Model. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 441–444.Vopěnka P. And Hájek P.. Permutation Submodels of the Model ∇. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 611–614.Hájek P. And Vopěnka P.. Some Permutation Submodels of the Model ∇. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 14 , Pp. 1–7.Vopěnka P.. ∇-Models in Which the Generalized Continuum Hypothesis. [REVIEW]Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  23.  1
    Review: Herbert B. Enderton, Elements of Set Theory. [REVIEW]Kenneth Kunen - 1981 - Journal of Symbolic Logic 46 (1):164-165.
  24.  1
    Review: Paul J. Cohen, Set Theory and the Continuum Hypothesis. [REVIEW]Kenneth Kunen - 1970 - Journal of Symbolic Logic 35 (4):591-592.
  25. A Minimal Degree Which Collapses $Omega_1$.Tim Carlson, Kenneth Kunen & Arnold W. Miller - 1984 - Journal of Symbolic Logic 49 (1):298-300.
    We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming $MA + \neq CH$, every new real constructs the collapsing map.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  26. A Minimal Degree Which Collapses Ω1.Tim Carlson, Kenneth Kunen & Arnold W. Miller - 1984 - Journal of Symbolic Logic 49 (1):298-300.
    We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming MA + ≠ CH, every new real constructs the collapsing map.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27. The Kleene Symposium: Proceedings of the Symposium Held June 18-24, 1978 at Madison, Wisconsin, U.S.A.Stephen Cole Kleene, Jon Barwise, H. Jerome Keisler & Kenneth Kunen (eds.) - 1980 - Sole Distributors for the U.S.A. And Canada, Elsevier North-Holland.
    No categories
     
    Export citation  
     
    My bibliography  
  28. [Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
  29. Shoenfield J. R.. Measurable Cardinals. Logic Colloquium '69, Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August 1969, Edited by Gandy R. O. And Yates C. E. M., Studies in Logic and the Foundations of Mathematics, Vol. 61, North-Holland Publishing Company, Amsterdam and London 1971, Pp. 19–49. [REVIEW]Kenneth Kunen - 1975 - Journal of Symbolic Logic 40 (1):93-94.
  30. Where MA First Fails.Kenneth Kunen - 1988 - Journal of Symbolic Logic 53 (2):429-433.
  31. A Combinatorial Property of P Κ Λ.The Partition Property for Certain Extendible Measures on Supercompact Cardinals.On a Combinatorial Property of Menas Related to the Partition Property for Measures on Supercompact Cardinals.Supercompact Cardinals, Trees of Normal Ultrafilters, and the Partition Property. [REVIEW]Carlos Augusto Di Prisco, Telis K. Menas, Donald H. Pelletier, Kenneth Kunen & Julius B. Barbanel - 1991 - Journal of Symbolic Logic 56 (3):1098.