Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the (...) analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. (shrink)
We analyze naturally occurring datasets from student use of educational technologies to explore a long-standing question of the scope of transfer of learning. We contrast a faculty theory of broad transfer with a component theory of more constrained transfer. To test these theories, we develop statistical models of them. These models use latent variables to represent mental functions that are changed while learning to cause a reduction in error rates for new tasks. Strong versions of these models provide a common (...) explanation for the variance in task difficulty and transfer. Weak versions decouple difficulty and transfer explanations by describing task difficulty with parameters for each unique task. We evaluate these models in terms of both their prediction accuracy on held-out data and their power in explaining task difficulty and learning transfer. In comparisons across eight datasets, we find that the component models provide both better predictions and better explanations than the faculty models. Weak model variations tend to improve generalization across students, but hurt generalization across items and make a sacrifice to explanatory power. More generally, the approach could be used to identify malleable components of cognitive functions, such as spatial reasoning or executive functions. (shrink)
Dienes & Perner (D&P) argue that nondeclarative knowledge can take multiple forms. We provide empirical support for this from two related lines of research about the development of mathematical reasoning. We then describe how different forms of procedural and declarative knowledge can be effectively modeled in Anderson's ACT-R theory, contrasting this computational approach with D&P's logical approach. The computational approach suggests that the commonly observed developmental progression from more implicit to more explicit knowledge can be viewed as a consequence of (...) accumulating and strengthening mental representations. (shrink)