See also
Kevin Baum
Universität des Saarlandes
  1. What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   7 citations  
  2.  65
    From Responsibility to Reason-Giving Explainable Artificial Intelligence.Kevin Baum, Susanne Mantel, Timo Speith & Eva Schmidt - 2022 - Philosophy and Technology 35 (1):1-30.
    We argue that explainable artificial intelligence (XAI), specifically reason-giving XAI, often constitutes the most suitable way of ensuring that someone can properly be held responsible for decisions that are based on the outputs of artificial intelligent (AI) systems. We first show that, to close moral responsibility gaps (Matthias 2004), often a human in the loop is needed who is directly responsible for particular AI-supported decisions. Second, we appeal to the epistemic condition on moral responsibility to argue that, in order to (...)
    Direct download (3 more)  
    Export citation  
    Bookmark   5 citations  
  3. Two challenges for CI trustworthiness and how to address them.Kevin Baum, Eva Schmidt & A. Köhl Maximilian - 2017
    We argue that, to be trustworthy, Computa- tional Intelligence (CI) has to do what it is entrusted to do for permissible reasons and to be able to give rationalizing explanations of its behavior which are accurate and gras- pable. We support this claim by drawing par- allels with trustworthy human persons, and we show what difference this makes in a hypo- thetical CI hiring system. Finally, we point out two challenges for trustworthy CI and sketch a mechanism which could be (...)
    Direct download (5 more)  
    Export citation