15 found
Order:
See also
Laura Crosilla
University of Birmingham
  1. Binary Refinement Implies Discrete Exponentiation.Peter Aczel, Laura Crosilla, Hajime Ishihara, Erik Palmgren & Peter Schuster - 2007 - Studia Logica 84 (3):361-368.
    Working in the weakening of constructive Zermelo-Fraenkel set theory in which the subset collection scheme is omitted, we show that the binary refinement principle implies all the instances of the exponentiation axiom in which the basis is a discrete set. In particular binary refinement implies that the class of detachable subsets of a set form a set. Binary refinement was originally extracted from the fullness axiom, an equivalent of subset collection, as a principle that was sufficient to prove that the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  19
    On Constructing Completions.Laura Crosilla, Hajime Ishihara & Peter Schuster - 2005 - Journal of Symbolic Logic 70 (3):969-978.
    The Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo—Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two—element coverings is used. In particular, the Dedekind reals form a set; whence we have also refined an earlier result by Aczel and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3. The Physics and Metaphysics of Identity and Individuality.Don Howard, Bas van Fraassen, Otávio Bueno, Elena Castellani, Laura Crosilla, Steven French & Décio Krause - 2011 - Metascience 20 (2):225-251.
    The physics and metaphysics of identity and individuality Content Type Journal Article DOI 10.1007/s11016-010-9463-7 Authors Don Howard, Department of Philosophy and Graduate Program in History and Philosophy of Science, University of Notre Dame, Notre Dame, IN 46556, USA Bas C. van Fraassen, Philosophy Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA Otávio Bueno, Department of Philosophy, University of Miami, Coral Gables, FL 33124, USA Elena Castellani, Department of Philosophy, University of Florence, Via Bolognese 52, 50139 (...)
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  5
    Finite Methods in Mathematical Practice.Peter Schuster & Laura Crosilla - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. De Gruyter. pp. 351-410.
    In the present contribution we look at the legacy of Hilbert's programme in some recent developments in mathematics. Hilbert's ideas have seen new life in generalised and relativised forms by the hands of proof theorists and have been a source of motivation for the so--called reverse mathematics programme initiated by H. Friedman and S. Simpson. More recently Hilbert's programme has inspired T. Coquand and H. Lombardi to undertake a new approach to constructive algebra in which strong emphasis is laid on (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  15
    Set Theory: Constructive and Intuitionistic Zf.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6.  2
    A Generalized Cut Characterization of the Fullness Axiom in CZF.Laura Crosilla, Erik Palmgren & Peter Schuster - 2013 - Logic Journal of the IGPL 21 (1):63-76.
    In the present note, we study a generalization of Dedekind cuts in the context of constructive Zermelo–Fraenkel set theory CZF. For this purpose, we single out an equivalent of CZF's axiom of fullness and show that it is sufficient to derive that the Dedekind cuts in this generalized sense form a set. We also discuss the instance of this equivalent of fullness that is tantamount to the assertion that the class of Dedekind cuts in the rational numbers, in the customary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  2
    Constructive Notions of Set: Part I. Sets in Martin–Löf Type Theory.Laura Crosilla - 2005 - Annali Del Dipartimento di Filosofia 11:347-387.
    This is the first of two articles dedicated to the notion of constructive set. In them we attempt a comparison between two different notions of set which occur in the context of the foundations for constructive mathematics. We also put them under perspective by stressing analogies and differences with the notion of set as codified in the classical theory Zermelo–Fraenkel. In the current article we illustrate in some detail the notion of set as expressed in Martin–L¨of type theory and present (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  8. Conservativity of Transitive Closure Over Weak Operational Set Theory.Laura Crosilla & Andrea Cantini - 2012 - In Ulrich Berger, Hannes Diener, Peter Schuster & Monika Seisenberger (eds.), Logic, Construction, Computation. De Gruyter.
    Constructive set theory a' la Myhill-Aczel has been extended in (Cantini and Crosilla 2008, Cantini and Crosilla 2010) to incorporate a notion of (partial, non--extensional) operation. Constructive operational set theory is a constructive and predicative analogue of Beeson's Inuitionistic set theory with rules and of Feferman's Operational set theory (Beeson 1988, Feferman 2006, Jaeger 2007, Jaeger 2009, Jaeger 1009b). This paper is concerned with an extension of constructive operational set theory (Cantini and Crosilla 2010) by a uniform operation of Transitive (...)
     
    Export citation  
     
    Bookmark  
  9. Constructive Set Theory with Operations.Andrea Cantini & Laura Crosilla - 2008 - In Logic Colloquium 2004.
    We present an extension of constructive Zermelo{Fraenkel set theory [2]. Constructive sets are endowed with an applicative structure, which allows us to express several set theoretic constructs uniformly and explicitly. From the proof theoretic point of view, the addition is shown to be conservative. In particular, we single out a theory of constructive sets with operations which has the same strength as Peano arithmetic.
     
    Export citation  
     
    Bookmark  
  10. Elementary Constructive Operational Set Theory.Andrea Cantini & Laura Crosilla - 2010 - In Ways of Proof Theory.
    We introduce an operational set theory in the style of [5] and [16]. The theory we develop here is a theory of constructive sets and operations. One motivation behind constructive operational set theory is to merge a constructive notion of set ([1], [2]) with some aspects which are typical of explicit mathematics [14]. In particular, one has non-extensional operations (or rules) alongside extensional constructive sets. Operations are in general partial and a limited form of self{application is permitted. The system we (...)
     
    Export citation  
     
    Bookmark  
  11. Exploring Predicativity.Laura Crosilla - 2018 - In Proof and Computation. pp. 83-108.
    Prominent constructive theories of sets as Martin-Löf type theory and Aczel and Myhill constructive set theory, feature a distinctive form of constructivity: predicativity. This may be phrased as a constructibility requirement for sets, which ought to be finitely specifiable in terms of some uncontroversial initial “objects” and simple operations over them. Predicativity emerged at the beginning of the 20th century as a fundamental component of an influential analysis of the paradoxes by Poincaré and Russell. According to this analysis the paradoxes (...)
     
    Export citation  
     
    Bookmark  
  12.  16
    From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics.Laura Crosilla & Peter Schuster (eds.) - 2005 - Oxford University Press.
    This edited collection bridges the foundations and practice of constructive mathematics and focuses on the contrast between the theoretical developments, which have been most useful for computer science (ie: constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logician, mathematicians, philosophers and computer scientists with contributions from leading researchers, it is up to date, highly topical and broad in scope.
    Direct download  
     
    Export citation  
     
    Bookmark  
  13. Exploring Predicativity.Laura Crosilla - 2018 - In Klaus Mainzer, Peter Schuster & Helmut Schwichtenberg (eds.), Proof and Computation. World Scientific.
    No categories
     
    Export citation  
     
    Bookmark  
  14. Predicativity and Feferman.Laura Crosilla - 2017 - In Feferman on Foundations. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
     
    Export citation  
     
    Bookmark  
  15. Tutorial for Minlog.Laura Crosilla, Monika Seisenberger & Helmut Schwichtenberg - 2011 - Minlog Proof Assistant - Freely Distributed.
    This is a tutorial for the Minlog Proof Assistant, version 5.0.
     
    Export citation  
     
    Bookmark