Search results for 'Logic, Symbolic and mathematical Charts, diagrams, etc' (try it on Scholar)

1000+ found
Order:
  1. Gerard Allwein & Jon Barwise (eds.) (1996). Logical Reasoning with Diagrams. Oxford University Press.
    One effect of information technology is the increasing need to present information visually. The trend raises intriguing questions. What is the logical status of reasoning that employs visualization? What are the cognitive advantages and pitfalls of this reasoning? What kinds of tools can be developed to aid in the use of visual representation? This newest volume on the Studies in Logic and Computation series addresses the logical aspects of the visualization of information. The authors of these specially commissioned papers explore (...)
    Direct download  
     
    Export citation  
     
    My bibliography   18 citations  
  2.  2
    Toshiyasu Arai (2002). Buchholz Wilfried. Notation Systems for Infinitary Derivations. Archive for Mathematical Logic, Vol. 30 No. 5–6 , Pp. 277–296.Buchholz Wilfried. Explaining Gentzen's Consistency Proof Within Infinitary Proof Theory. Computational Logic and Proof Theory, 5th Kurt Gödel Colloquium, KGC '97, Vienna, Austria, August 25–29, 1997, Proceedings, Edited by Gottlob Georg, Leitsch Alexander, and Mundici Daniele, Lecture Notes in Computer Science, Vol. 1289, Springer, Berlin, Heidelberg, New York, Etc., 1997, Pp. 4–17.Tupailo Sergei. Finitary Reductions for Local Predicativity, I: Recursively Regular Ordinals. Logic Colloquium '98, Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Prague, Czech Republic, August 9–15, 1998, Edited by Buss Samuel R., Háajek Petr, and Pudlák Pavel, Lecture Notes in Logic, No. 13, Association for Symbolic Logic, Urbana, and A K Peters, Natick, Mass., Etc., 2000, Pp. 465–499. [REVIEW] Bulletin of Symbolic Logic 8 (3):437-439.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  3.  3
    Oliver Aberth (1991). Pour-El Marian B. And Richards J. Ian. Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, Heidelberg, New York, Etc., 1989, Xi+ 206 Pp. [REVIEW] Journal of Symbolic Logic 56 (2):749-750.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  4.  1
    William Mitchell (1984). Dodd A. And Jensen R.. The Core Model. Annals of Mathematical Logic, Vol. 20 , Pp. 43–75.Dodd Tony and Jensen Ronald. The Covering Lemma for K. Annals of Mathematical Logic, Vol. 22 , Pp. 1–30.Dodd A. J. And Jensen R. B.. The Covering Lemma for L[U]. Annals of Mathematical Logic, Pp. 127–135.Donder D., Jensen R. B. And Koppelberg B. J.. Some Applications of the Core Model. Set Theory and Model Theory, Proceedings of an Informal Symposium Held at Bonn, June 1–3, 1979, Edited by Jensen R. B. And Prestel A., Lecture Notes in Mathematics, Vol. 872, Springer-Verlag, Berlin, Heidelberg, and New York, 1981, Pp. 55–97.Dodd A.. The Core Model. London Mathematical Society Lecture Note Series, No. 61. Cambridge University Press, Cambridge Etc. 1982, Xxxviii + 229 Pp. [REVIEW] Journal of Symbolic Logic 49 (2):660-662.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  5.  2
    Toshiyasu Arai (2002). Buchholz Wilfried. Notation Systems for Infinitary Derivations. Archive for Mathematical Logic, Vol. 30 No. 5–6 (1991), Pp. 277–296. Buchholz Wilfried. Explaining Gentzen's Consistency Proof Within Infinitary Proof Theory. Computational Logic and Proof Theory, 5th Kurt Gödel Colloquium, KGC'97, Vienna, Austria, August 25–29, 1997, Proceedings, Edited by Gottlob Georg, Leitsch Alexander, and Mundici Daniele, Lecture Notes in Computer Science, Vol. 1289, Springer, Berlin, Heidelberg, New York, Etc., 1997 ... [REVIEW] Bulletin of Symbolic Logic 8 (3):437-439.
    Direct download  
     
    Export citation  
     
    My bibliography  
  6.  1
    Robert S. Lubarsky (1992). Louveau A.. Some Results in the Wadge Hierarchy of Borel Sets. Cabal Seminar 79–81, Proceedings, Caltech-UCLA Logic Seminar 1979–81, Edited by Kechris AS, Martin DA, and Moschovakis YN, Lecture Notes in Mathematics, Vol. 1019, Springer-Verlag, Berlin Etc. 1983, Pp. 28–55. Louveau A. And Raymond J. Saint. Borel Classes and Closed Games: Wadge-Type and Hurewicz-Type Results. Transactions of the American Mathematical Society, Vol. 304 (1987), Pp. 431–467. Louveau Alain and Raymond Jean Saint. The Strength ... [REVIEW] Journal of Symbolic Logic 57 (1):264-266.
    Direct download  
     
    Export citation  
     
    My bibliography  
  7.  1
    Gregory Cherlin (2001). Poizat Bruno. A Course in Model Theory. An Introduction to Contemporary Mathematical Logic. English Translation by Klein Moses of Jsl Lviii 1074. Universitext. Springer, New York, Berlin, Heidelberg, Etc., 2000, XXXI+ 443 Pp. [REVIEW] Bulletin of Symbolic Logic 7 (4):521-522.
    Direct download  
     
    Export citation  
     
    My bibliography  
  8.  1
    Helmut Schwichtenberg (1995). Logic From Computer Science, Proceedings of a Workshop Held November 13–17, 1989, Edited by Moschovakis YN, Mathematical Sciences Research Institute Publications, Vol. 21, Springer-Verlag, New York Etc. 1992, Xi+ 608 Pp. [REVIEW] Journal of Symbolic Logic 60 (3):1021-1022.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  9. Gregory Cherlin (1984). Shelah Saharon. Finite Diagrams Stable in Power. Annals of Mathematical Logic, Vol. 2 No. 1 , Pp. 69–118. Journal of Symbolic Logic 49 (1):315-316.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10. Peter Cholak (1999). Simpson Stephen G.. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin, Heidelberg, New York, Etc., 1999, Xiv + 445 Pp. [REVIEW] Journal of Symbolic Logic 64 (3):1356-1357.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  11. Walter Felscher (1994). Rubin Jean E.. Mathematical Logic: Applications and Theory. The Saunders Series. Saunders College Publishing, Philadelphia Etc. 1990, Xvi + 417 Pp. [REVIEW] Journal of Symbolic Logic 59 (2):670-671.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  12. John B. Goode (1990). Classification Theory, Proceedings of the U.S.-Israel Workshop on Model Theory in Mathematical Logic Held in Chicago, Dec. 15–19, 1985, Edited by Baldwin J. T., Lecture Notes in Mathematics, Vol. 1292, Springer-Verlag, Berlin Etc. 1987, Vi + 500 Pp. [REVIEW] Journal of Symbolic Logic 55 (2):878-881.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  13. H. Hermes (1982). Hao Wang. Popular Lectures on Mathematical Logic. Van Nostrand Reinhold Company, New York Etc., and Science Press, Beijing, 1981, Ix + 273 Pp. [REVIEW] Journal of Symbolic Logic 47 (4):908-909.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  14. Eberhard Herrmann & Rodney Downey (1990). Soare Robert I.. Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, Heidelberg, New York, Etc., 1987, Xviii + 437 Pp. [REVIEW] Journal of Symbolic Logic 55 (1):356-357.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  15. Richard Kaye (1995). Hájek Petr and Pudlák Pavel. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, Berlin Etc. 1993, Xiv + 460 Pp. [REVIEW] Journal of Symbolic Logic 60 (4):1317-1320.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  16. Péter Komjáath (2000). Shelah Saharon. Proper and Improper Forcing. Second Edition of JSL L 237. Perspectives in Mathematical Logic. Springer, Berlin, Heidelberg, New York, Etc., 1998, Xlvii + 1020 Pp. [REVIEW] Bulletin of Symbolic Logic 6 (1):83-86.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  17. Claude Laflamme (2001). Bartoszynski Tomek. On the Structure of Measurable Filters on a Countable Set. Real Analysis Exchange, Vol. 17 No. 2 , Pp. 681–701.Bartoszynski Tomek and Shelah Saharon. Intersection of Archive for Mathematical Logic, Vol. 31 , Pp. 221–226.Bartoszynski Tomek and Judah Haim. Measure and Category—Filters on Ω. Set Theory of the Continuum, Edited by Judah H., Just W., and Woodin H., Mathematical Sciences Research Institute Publications, Vol. 26, Springer-Verlag, New York, Berlin, Heidelberg, Etc., 1992, Pp. 175–201.Bartoszynski Tomek, Goldstern Martin, Judah Haim, and Shelah Saharon. All Meager Filters May Be Null. Proceedings of the American Mathematical Society, Vol. 117 , Pp. 515–521.Bartoszyński Tomek. Remarks on the Intersection of Filters. Topology and its Applications, Vol. 84 , Pp. 139–143. [REVIEW] Bulletin of Symbolic Logic 7 (3):388-389.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  18. Michael C. Laskowski (1998). Buechler Steven. Essential Stability Theory. Perspectives in Mathematical Logic. Springer, Berlin, Heidelberg, New York, Etc., 1996, Xiv + 355 Pp. [REVIEW] Journal of Symbolic Logic 63 (1):325-326.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19. Steffen Lempp (1995). Ebbinghaus Heinz-Dieter, Flum Jörg, and Thomas Wolfgang. Einführung in Die Mathematische Logik. Die Mathematik. Wissenschaftliche Buchgesellschaft, Darmstadt 1978, Ix + 288 Pp.Ebbinghaus H.-D., Flum J., and Thomas W.. Mathematical Logic. Revised English Translation by Ann S. Ferebee of the Preceding. Undergraduate Texts in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1984, Ix + 216 Pp.Ebbinghaus Heinz-Dieter, Flum Jörg, and Thomas Wolfgang. Einführung in Die Mathematische Logik. Second Edition. Die Mathematik. Wissenschaftliche Buchgesellschaft, Darmstadt 1986, Ix + 308 Pp.Ebbinghaus H.-D., Flum J., and Thomas W.. Mathematical Logic. Second Edition. Revised English Translation by Ann S. Ferebee and Margit Meßmer of the Preceding. Undergraduate Texts in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, Etc., 1994, X + 289 Pp. [REVIEW] Journal of Symbolic Logic 60 (3):1013-1014.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  20. Azriel Levy (1996). Kanamori Akihiro. The Higher Infinite. Large Cardinals in Set Theory From Their Beginnings. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, Heidelberg, New York, Etc., 1994, Xxiv + 536 Pp. [REVIEW] Journal of Symbolic Logic 61 (1):334-336.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  21. Robert S. Lubarsky (1992). Louveau A.. Some Results in the Wadge Hierarchy of Borel Sets. Cabal Seminar 79–81, Proceedings, Caltech-UCLA Logic Seminar 1979–81, Edited by Kechris A. S., Martin D. A., and Moschovakis Y. N., Lecture Notes in Mathematics, Vol. 1019, Springer-Verlag, Berlin Etc. 1983, Pp. 28–55.Louveau A. And Raymond J. Saint. Borel Classes and Closed Games: Wadge-Type and Hurewicz-Type Results. Transactions of the American Mathematical Society, Vol. 304 , Pp. 431–467.Louveau Alain and Raymond Jean Saint. The Strength of Borel Wadge Determinacy. Cabal Seminar 81–85, Proceedings, Caltech-UCLA Logic Seminar 1981–85, Edited by Kechris A. S., Martin D. A., and Steel J. R., Lecture Notes in Mathematics, Vol. 1333, Springer-Verlag, Berlin Etc. 1988, Pp. 1–30. [REVIEW] Journal of Symbolic Logic 57 (1):264-266.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  22. G. L. McColm (1996). Heinz-Dieter Ebbinghaus and Flum Jörg. Finite Model Theory. Perspectives in Mathematical Logic. Springer, Berlin, Heidelberg, New York, Etc., 1995, Xv + 327 Pp. [REVIEW] Journal of Symbolic Logic 61 (3):1049-1050.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  23. Dag Normann (1992). Sacks Gerald E.. Higher Recursion Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin Etc. 1990, Xv + 344 Pp. [REVIEW] Journal of Symbolic Logic 57 (2):761-762.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  24. Anand Pillay (1992). Baldwin John T.. Fundamentals of Stability Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, Heidelberg, New York, Etc., 1988, Xiii + 447 Pp. [REVIEW] Journal of Symbolic Logic 57 (1):258-259.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  25. D. van Dalen (1980). Mendelson Elliott. Introduction to Mathematical Logic. Second Edition of XXXIV 110. D. Van Nostrand Company, New York Etc. 1979, Viii + 328 Pp. [REVIEW] Journal of Symbolic Logic 45 (3):631.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  26. M. Yasuhara (1988). Andrews Peter B.. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Computer Science and Applied Mathematics. Academic Press, Orlando Etc. 1986, Xv + 304 Pp. [REVIEW] Journal of Symbolic Logic 53 (1):312-314.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27.  39
    John N. Crossley (ed.) (1972). What is Mathematical Logic? Dover Publications.
    This lively introduction to mathematical logic, easily accessible to non-mathematicians, offers an historical survey, coverage of predicate calculus, model theory, Godel’s theorems, computability and recursivefunctions, consistency and independence in axiomatic set theory, and much more. Suggestions for Further Reading. Diagrams.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  28.  48
    G. T. Kneebone (1963). Mathematical Logic and the Foundations of Mathematics: An Introductory Survey. Dover.
    Graduate-level historical study is ideal for students intending to specialize in the topic, as well as those who only need a general treatment. Part I discusses traditional and symbolic logic. Part II explores the foundations of mathematics, emphasizing Hilbert’s metamathematics. Part III focuses on the philosophy of mathematics. Each chapter has extensive supplementary notes; a detailed appendix charts modern developments.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  29.  16
    M. Ben-Ari (1993). Mathematical Logic for Computer Science. Prentice Hall.
    Mathematical Logic for Computer Science is a mathematics textbook with theorems and proofs, but the choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. To provide a balanced treatment of logic, tableaux are related to deductive proof systems.The logical systems presented are:- Propositional calculus (including binary decision diagrams);- Predicate calculus;- Resolution;- Hoare logic;- (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  30.  4
    A. A. Stoli͡ar (1984). Introduction to Elementary Mathematical Logic. Dover Publications.
    Lucid, non-intimidating presentation of propositional logic, propositional calculus and predicate logic by Russian scholar. Topics of concern in a variety of fields, including computer science, systems analysis, linguistics, etc. Accessible to high school students; valuable review of fundamentals for professionals. Exercises (no solutions). Preface. Three appendices. Indices. Bibliogaphy. 14 figures.
    Direct download  
     
    Export citation  
     
    My bibliography  
  31. Walter Carnielli (1986). Seventh Latin American on Mathematical Logic- Meeting of the Association for Symbolic Logic: Campinas, Brazil, 1985. Journal of Symbolic Logic 51 (4):1093-1103.
    This publication refers to the proceedings of the Seventh Latin American on Mathematical Logic held in Campinas, SP, Brazil, from July 29 to August 2, 1985. The event, dedicated to the memory of Ayda I. Arruda, was sponsored as an official Meeting of the Association for Symbolic Logic. Walter Carnielli. -/- The Journal of Symbolic Logic Vol. 51, No. 4 (Dec., 1986), pp. 1093-1103.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  32.  6
    Johanna N. Y. Franklin (forthcoming). Reviewed Work(S): Lowness Properties and Randomness. Advances in Mathematics, Vol. 197 by André Nies; Lowness for the Class of Schnorr Random Reals. SIAM Journal on Computing, Vol. 35 by Bjørn Kjos-Hanssen; André Nies; Frank Stephan; Lowness for Kurtz Randomness. The Journal of Symbolic Logic, Vol. 74 by Noam Greenberg; Joseph S. Miller; Randomness and Lowness Notions Via Open Covers. Annals of Pure and Applied Logic, Vol. 163 by Laurent Bienvenu; Joseph S. Miller; Relativizations of Randomness and Genericity Notions. The Bulletin of the London Mathematical Society, Vol. 43 by Johanna N. Y. Franklin; Frank Stephan; Liang Yu; Randomness Notions and Partial Relativization. Israel Journal of Mathematics, Vol. 191 by George Barmpalias; Joseph S. Miller; André Nies. [REVIEW] Association for Symbolic Logic: The Bulletin of Symbolic Logic.
    Review by: Johanna N. Y. Franklin The Bulletin of Symbolic Logic, Volume 19, Issue 1, Page 115-118, March 2013.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography  
  33.  11
    Sun-Joo Shin & Giovanna Corsi (1997). The Logical Status of Diagrams. British Journal for the Philosophy of Science 48 (2):290-291.
  34. Imre Lakatos (ed.) (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press.
    Proofs and Refutations is essential reading for all those interested in the methodology, the philosophy and the history of mathematics. Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   158 citations  
  35. Alonzo Church (1953). Hayakawa S. I.. Semantics. ETC.: A Review of General Semantics, Vol. 9 No. 4 , Pp. 243–257.Rapoport Anatol. What is Semantics? ETC.: A Review of General Semantics, Vol. 10 No. 1 , Pp. 12–24. A Reprint of XVII 216.Martin Norman M.. Review of Hayakawa's Language in Thought and Action. Synthese, Vol. 8 , Pp. 93–94.Huntington Edward V. And Ladd-Franklin Christine. Logic, Symbolic. The Encyclopedia Americana, 1952 Edn., Americana Corporation, New York and Chicago 1952, Vol. 17, Pp. 568–573. [REVIEW] Journal of Symbolic Logic 18 (2):183.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  36. Alonzo Church (1975). Wallace W. A.. Logic, Symbolic. New Catholic Encyclopedia, Prepared by an Editorial Staff at the Catholic University of America, McGraw-Hill Book Company, New York Etc. 1967, Vol. 8, Pp. 962–964. [REVIEW] Journal of Symbolic Logic 40 (4):597.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  37. V. Wiktor Marek (1998). Besnard Philippe. An Introduction to Default Logic. Symbolic Computation, Artificial Intelligence Series. Springer-Verlag, Berlin Etc. 1989, Xi + 208 Pp. [REVIEW] Journal of Symbolic Logic 63 (4):1608-1610.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  38. Victor J. Cieutat (1969). Traditional Logic and the Venn Diagram; a Programed Introduction. Science Research Associates, Chicago.
     
    Export citation  
     
    My bibliography  
  39. Boris Iglewicz (1973). An Introduction to Mathematical Reasoning. New York,Macmillan.
     
    Export citation  
     
    My bibliography  
  40. John Venn (1881). On the Various Notations Adopted for Expressing the Common Propositions of Logic. Cambridge University Press.
     
    Export citation  
     
    My bibliography  
  41.  19
    Herbert B. Enderton (1972). A Mathematical Introduction to Logic. New York,Academic Press.
    A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   64 citations  
  42.  3
    Itaï Ben Yaacov (2015). Ilijas Farah, Bradd Hart, and David Sherman. Model Theory of Operator Algebras I: Stability. Bulletin of the London Mathematical Society, Vol. 45 , No. 4, Pp. 825–838, Doi:10.1112/Blms/Bdt014.Ilijas Farah, Bradd Hart, and David Sherman. Model Theory of Operator Algebras II: Model Theory. Israel Journal of Mathematics, Vol. 201 , No. 1, Pp. 477–505, Doi:10.1007/S11856-014-1046-7.Ilijas Farah, Bradd Hart, and David Sherman. Model Theory of Operator Algebras III: Elementary Equivalence and II1 Factors. Bulletin of the London Mathematical Society, Vol. 46 , No. 3, Pp. 609–628, Doi:10.1112/Blms/Bdu012.Isaac Goldbring, Bradd Hart, and Thomas Sinclair. The Theory of Tracial von Neumann Algebras Does Not Have a Model Companion. Journal of Symbolic Logic, Vol. 78 , No. 3, Pp. 1000–1004. [REVIEW] Bulletin of Symbolic Logic 21 (4):425-427.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  43.  6
    Review by: James Cummings (2015). Reviewed Work: Recent Papers on the Tree Property. Aronszajn Trees and Failure of the Singular Cardinal Hypothesis. Journal of Mathematical Logic, Vol. 9, No. 1 , The Tree Property at ℵ Ω+1. Journal of Symbolic Logic, Vol. 77, No. 1 , The Tree Property and the Failure of SCH at Uncountable Confinality. Archive for Mathematical Logic, Vol. 51, No. 5-6 , The Tree Property and the Failure of the Singular Cardinal Hypothesis at [Image]. Journal of Symbolic Logic, Vol. 77, No. 3 , Aronszajn Trees and the Successors of a Singular Cardinal. Archive for Mathematical Logic, Vol. 52, No. 5-6 , The Tree Property Up to ℵ Ω+1. Journal of Symbolic Logic. Vol. 79, No. 2 by Itay Neeman; Dima Sinapova; Spencer Unger. [REVIEW] Bulletin of Symbolic Logic 21 (2):188-192.
    Direct download  
     
    Export citation  
     
    My bibliography  
  44.  2
    Andrea Cantini (2002). Sets and Proofs, Invited Papers From Logic Colloquium '97—European Meeting of the Association for Symbolic Logic, Leeds, July 1997. Thomas Strahm. First Steps Into Metapredicativity in Explicit Mathematics. Sets and Proofs, Invited Papers From Logic Colloquium '97—European Meeting of the Association for Symbolic Logic, Leeds, July 1997, Edited by S. Barry Cooper and John K. Truss, London Mathematical Society Lecture Note Series, No. 258, Cambridge University Press, Cambridge, New York, and Oakleigh, Victoria, 1999, Pp. 383–402. [REVIEW] Bulletin of Symbolic Logic 8 (4):535-536.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  45.  5
    Robert McNaughton (1997). Robinson Raphael M.. Restricted Set-Theoretical Definitions in Arithmetic. Proceedings of the American Mathematical Society, Vol. 9 (1958), Pp. 238–242. Robinson Raphael M.. Restricted Set-Theoretical Definitions in Arithmetic. Summaries of Talks Presented at the Summer Institute for Symbolic Logic, Cornell University, 1957, 2nd Edn., Communications Research Division, Institute for Defense Analyses, Princeton, NJ, 1960, Pp. 139–140. [REVIEW] Journal of Symbolic Logic 31 (4):659-660.
    Direct download  
     
    Export citation  
     
    My bibliography  
  46.  9
    James W. Cummings (2000). Apter Arthur W.. On the Least Strongly Compact Cardinal. Israel Journal of Mathematics, Vol. 35 (1980), Pp. 225–233. Apter Arthur W.. Measurability and Degrees of Strong Compactness. The Journal of Symbolic Logic, Vol. 46 (1981), Pp. 249–254. Apter Arthur W.. A Note on Strong Compactness and Supercompactness. Bulletin of the London Mathematical Society, Vol. 23 (1991), Pp. 113–115. Apter Arthur W.. On the First N Strongly Compact Cardinals. Proceedings of the American Mathematical Society, Vol. 123 ... [REVIEW] Bulletin of Symbolic Logic 6 (1):86-89.
    Direct download  
     
    Export citation  
     
    My bibliography  
  47.  5
    Andrea Cantini (2002). Strahm Thomas. First Steps Into Metapredicativity in Explicit Mathematics. Sets and Proofs, Invited Papers From Logic Colloquium'97—European Meeting of the Association for Symbolic Logic, Leeds, July 1997, Edited by Cooper S. Barry and Truss John K., London Mathematical Society Lecture Note Series, No. 258, Cambridge University Press, Cambridge, New York, and Oakleigh, Victoria, 1999, Pp. 383–402. [REVIEW] Bulletin of Symbolic Logic 8 (4):535-536.
    Direct download  
     
    Export citation  
     
    My bibliography  
  48.  3
    Fernando Ferreira (2002). Strahm Thomas. Polynomial Time Operations in Explicit Mathematics. The Journal of Symbolic Logic, Vol. 62 (1997), Pp. 575–594. Cantini Andrea. Feasible Operations and Applicative Theories Based on Λη. Mathematical Logic Quarterly, Vol. 46 (2000), Pp. 291–312. [REVIEW] Bulletin of Symbolic Logic 8 (4):534-535.
    Direct download  
     
    Export citation  
     
    My bibliography  
  49.  1
    James W. Cummings (2000). Apter Arthur W.. On the Least Strongly Compact Cardinal. Israel Journal of Mathematics, Vol. 35 , Pp. 225–233.Apter Arthur W.. Measurability and Degrees of Strong Compactness. The Journal of Symbolic Logic, Vol. 46 , Pp. 249–254.Apter Arthur W.. A Note on Strong Compactness and Supercompactness. Bulletin of the London Mathematical Society, Vol. 23 , Pp. 113–115.Apter Arthur W.. On the First N Strongly Compact Cardinals. Proceedings of the American Mathematical Society, Vol. 123 , Pp. 2229–2235.Apter Arthur W. And Shelah Saharon. On the Strong Equality Between Supercompactness and Strong Compactness.. Transactions of the American Mathematical Society, Vol. 349 , Pp. 103–128.Apter Arthur W. And Shelah Saharon. Menas' Result is Best Possible. Ibid., Pp. 2007–2034.Apter Arthur W.. More on the Least Strongly Compact Cardinal. Mathematical Logic Quarterly, Vol. 43 , Pp. 427–430.Apter Arthur W.. Laver Indestructibility and the Class of Compact Cardinals. The Journal of Symbolic Logic, Vol. 63. [REVIEW] Bulletin of Symbolic Logic 6 (1):86-89.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  50.  1
    H. E. Vaughan (1953). Robinson Abraham. On the Application of Symbolic Logic to Algebra. Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30-September 6, 1950, American Mathematical Society, Providence 1952, Vol. I, Pp. 686–694.Tarski Alfred. Some Notions and Methods on the Borderline of Algebra and Metamathematics. Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30-September 6, 1950, American Mathematical Society, Providence 1952, Vol. I, Pp. 705–720. [REVIEW] Journal of Symbolic Logic 18 (2):182.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000