7 found
Order:
  1.  16
    Les Algèbres de Heyting Et de Lukasiewicz Trivalentes.Luiz Monteiro - 1970 - Notre Dame Journal of Formal Logic 11 (4):453-466.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  36
    Maximal Subalgebras of MVn-Algebras. A Proof of a Conjecture of A. Monteiro.Roberto Cignoli & Luiz Monteiro - 2006 - Studia Logica 84 (3):393 - 405.
    For each integer n ≥ 2, MVn denotes the variety of MV-algebras generated by the MV-chain with n elements. Algebras in MVn are represented as continuous functions from a Boolean space into a n-element chain equipped with the discrete topology. Using these representations, maximal subalgebras of algebras in MVn are characterized, and it is shown that proper subalgebras are intersection of maximal subalgebras. When A ∈ MV3, the mentioned characterization of maximal subalgebras of A can be given in terms of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3.  12
    Maximal Subalgebras of MVn-Algebras. A Proof of a Conjecture of A. Monteiro.Roberto Cignoli & Luiz Monteiro - 2006 - Studia Logica 84 (3):393-405.
    For each integer n ≥ 2, MVn denotes the variety of MV-algebras generated by the MV-chain with n elements. Algebras in MVn are represented as continuous functions from a Boolean space into a n-element chain equipped with the discrete topology. Using these representations, maximal subalgebras of algebras in MVn are characterized, and it is shown that proper subalgebras are intersection of maximal subalgebras. When A ∈ MV3, the mentioned characterization of maximal subalgebras of A can be given in terms of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  19
    Construction of Monadic Three-Valued Łukasiewicz Algebras.Luiz Monteiro, Sonia Savini & Julio Sewald - 1991 - Studia Logica 50 (3-4):473 - 483.
    The notion of monadic three-valued ukasiewicz algebras was introduced by L. Monteiro ([12], [14]) as a generalization of monadic Boolean algebras. A. Monteiro ([9], [10]) and later L. Monteiro and L. Gonzalez Coppola [17] obtained a method for the construction of a three-valued ukasiewicz algebra from a monadic Boolea algebra. In this note we give the construction of a monadic three-valued ukasiewicz algebra from a Boolean algebra B where we have defined two quantification operations and * such that *x=*x (where (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  5.  8
    Vlad Boicescu. Sur la Représentation des Algèbres de Lukasiewicz N-Valentes. Comptes Rendus Hebdomadaires des Séances de l'Acaéimie des Sciences, Sér. A T. 270 , P. 4–7. [REVIEW]Luiz Monteiro - 1973 - Journal of Symbolic Logic 38 (1):153-153.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6.  5
    Review: Vlad Boicescu, Sur la Representation des Algebres de Lukasiewicz $n$-valentes. [REVIEW]Luiz Monteiro - 1973 - Journal of Symbolic Logic 38 (1):153-153.
  7.  9
    Maximal Subalgebras of $\Text{MV}_{\Text{N}}$ -Algebras. A Proof of a Conjecture of A. Monteiro.Roberto Cignoli & Luiz Monteiro - 2006 - Studia Logica 84 (3):393-405.
    For each integer $n\geq 2,{\Bbb MV}_{n}$ denotes the variety of MV-algebras generated by the MV-chain with n elements. Algebras in ${\Bbb MV}_{n}$ are represented as continuous functions from a Boolean space into a n-element chain equipped with the discrete topology. Using these representations, maximal subalgebras of algebras in ${\Bbb MV}_{n}$ are characterized, and it is shown that proper subalgebras are intersection of maximal subalgebras. When $A\in {\Bbb MV}_{3}$, the mentioned characterization of maximal subalgebras of A can be given in terms (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark