Order:
Disambiguations
Michael Otte [27]Marcel Otte [8]M. Otte [4]Max Otte [2]
Marcus Otte [2]Marcus Shane Otte [1]
  1. Analysis and Synthesis in Mathematics,.Michael Otte & Marco Panza (eds.) - 1997 - Kluwer Academic Publishers.
  2.  22
    Introduction.Lorraine Daston & Michael Otte - 1991 - Science in Context 4 (2):223-232.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  3.  64
    Does mathematics have objects? In what sense?M. Otte - 2003 - Synthese 134 (1-2):181 - 216.
  4. Limits of constructivism: Kant, Piaget and Peirce.Michael Otte - 1998 - Science & Education 7 (5):425-450.
  5. Analysis and synthesis in mathematics from the perspective of Charles S. Peirce's philosophy.Michael Otte - forthcoming - Boston Studies in the Philosophy of Science.
  6. Mathematics as an activity and the analytic-synthetic distinction.M. Otte & M. Panza - forthcoming - Boston Studies in the Philosophy of Science.
  7.  40
    The Applicability of Mathematics as a Philosophical Problem: Mathematization as Exploration.Johannes Lenhard & Michael Otte - 2018 - Foundations of Science 23 (4):719-737.
    This paper discerns two types of mathematization, a foundational and an explorative one. The foundational perspective is well-established, but we argue that the explorative type is essential when approaching the problem of applicability and how it influences our conception of mathematics. The first part of the paper argues that a philosophical transformation made explorative mathematization possible. This transformation took place in early modernity when sense acquired partial independence from reference. The second part of the paper discusses a series of examples (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  36
    Arithmetic and geometry: Some remarks on the concept of complementarity.M. Otte - 1990 - Studies in Philosophy and Education 10 (1):37-62.
    This paper explores the classical idea of complementarity in mathematics concerning the relationship of intuition and axiomatic proof. Section I illustrates the basic concepts of the paper, while Section II presents opposing accounts of intuitionist and axiomatic approaches to mathematics. Section III analyzes one of Einstein's lecture on the topic and Section IV examines an application of the issues in mathematics and science education. Section V discusses the idea of complementarity by examining one of Zeno's paradoxes. This is followed by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Grenzen der Mathematisierung: Von der grundlegenden Bedeutung der Anwendungen.Johannes Lenhard & Michael Otte - 2005 - Philosophia Naturalis 42 (1):15-47.
     
    Export citation  
     
    Bookmark   2 citations  
  10. Mathematical Creativity and the Character of Mathematical Objects.Michael Otte - 1999 - Logique Et Analyse 42 (167-168):387-410.
     
    Export citation  
     
    Bookmark   2 citations  
  11.  51
    Proof-analysis and continuity.Michael Otte - 2004 - Foundations of Science 11 (1-2):121-155.
    During the first phase of Greek mathematics a proof consisted in showing or making visible the truth of a statement. This was the epagogic method. This first phase was followed by an apagogic or deductive phase. During this phase visual evidence was rejected and Greek mathematics became a deductive system. Now epagoge and apagoge, apart from being distinguished, roughly according to the modern distinction between inductive and deductive procedures, were also identified on account of the conception of generality as continuity. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  30
    Analyse und Synthese oder von Leibniz und Kant zum axiomatischen Denken.Johannes Lenhard & Michael Otte - 2002 - Philosophia Naturalis 39 (2):259-292.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  13.  21
    The origins of language: Material sources.Marcel Otte - 2007 - Diogenes 54 (2):49 - 59.
    This article seeks to show the interaction between cultural and anatomic evolution in the birth and differentiation of cultures and languages. The diversity which characterizes our world does not preclude logical regularities due to the coherence of the human mind, which evolved slowly through the paleontological phases of its emergence over millions of years. The anatomical retroaction of the hominids is analyzed to show that, in the long run, anatomy reflected ‘cultural selection’. With the anatomic evolution of man, culture became (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. Analysis and synthesis in mathematics, Boston studies in the philosophy of science, vol. 196.Michaël Otte & Marco Panza - 1999 - Revue Philosophique de la France Et de l'Etranger 189 (1):99-99.
     
    Export citation  
     
    Bookmark  
  15.  4
    Analytische Philosophie: Anspruch und Wirklichkeit eines Programms.Michael Otte - 2014 - Hamburg: Meiner.
    Anstelle einer Einleitung: ein Thema und eine Sichtweise desselben -- Analytische Philsophie zwischen Sprache, Logik und Mathematik -- Die analytische Philosophie und das Phänomenon der Komplementarität -- Kant, Bolzano und Peirce: die Unterschedung des Analytischen und Synthetischen, oder: von der Erkenntnistheorie zur Semantik und Zeichentheorie -- Ernst Cassirer und die Entwicklung von Analyse und Synthese seit Descartes und Leibniz -- Bertrand Russell (1872-1970) -- Die naturalisierte Erkenntnistheorie zwischen Wiener Kries und Pragmatismus: Willard Van Orward [sic] Quine -- Richard Rorty: der (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  16.  14
    Constructivism and Objects of Mathematical Theory.Michael Otte - 1992 - In Javier Echeverria, Andoni Ibarra & Thomas Mormann (eds.), The Space of Mathematics: Philosophical, Epistemological, and Historical Explorations. De Gruyter. pp. 296--313.
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  58
    Der Charakter der Mathematik zwischen Philosophie und Wissenschaft.Michael Otte - 1989 - Philosophica 43:79-126.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18. Die Philosophie der Mathematik bei Charles S. Peirce im Kontext seines "evolutionären Realismus". Eine Untersuchung zum Peirceschen Kontinuitätsprinzip.Michael Otte & Michael H. G. Hoffmann - 1994 - Dialektik. Enzyklopädische Zeitschrift Für Philosophie Und Wissenschaften 1994:181–186.
     
    Export citation  
     
    Bookmark  
  19.  5
    Estimation of optical flow based on higher-order spatiotemporal derivatives in interlaced and non-interlaced image sequences.Michael Otte & Hans-Hellmut Nagel - 1995 - Artificial Intelligence 78 (1-2):5-43.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Gegenstand und Methode in der Geschichte der Mathematik.Michael Otte - 1992 - Philosophia Naturalis 29 (1):31-68.
    No categories
     
    Export citation  
     
    Bookmark  
  21. Kontinuitätsprinzip und Prinzip der Identität des Ununterscheidbaren.Michael Otte - 1993 - Studia Leibnitiana 25 (1):70-89.
    The dynamics of the historical growth of mathematics as well as natural science is reflected by the interaction of the continuity principle and the principle of the identity of indiscernibles. Aristotle, for example on the one side is responsible for introducing the continuity principle into natural history. On the other hand he is regarded as the great representative of a logic which rests upon the assumption of the possibility of clear divisions and rigorous classification. In modern times the Aristotelian antithesis (...)
    No categories
     
    Export citation  
     
    Bookmark   1 citation  
  22. Mathematik und Verallgemeinerung: Peirce'semiotisch-pragmatische Sicht.Michael Otte - 1997 - Philosophia Naturalis 34 (2):175-222.
    No categories
     
    Export citation  
     
    Bookmark   1 citation  
  23.  9
    Origines du langage : sources matérielles.Marcel Otte - 2006 - Diogène 214 (2):59-70.
  24.  43
    Style as a Historical Category.Michael Otte - 1991 - Science in Context 4 (2):233-264.
    The ArgumentIn writing the history of science, the fluctuations between two meanings of the concept of style are of special interest: a simple or direct meaning of this concept referring to a means of expression and of presentation, and a philosophical interpretation of this term referring to “a world of objective spiritual order.” The last two chapters of this paper consider the perspective of the simple meaning of the concept, the first two chapters take the philosophical meaning as their starting (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  22
    Space, complementarity, and “diagrammatic reasoning”.Michael Otte - 2011 - Semiotica 2011 (186):275-296.
    In the development of pure mathematics during the nineteenth and twentieth centuries, two very different movements had prevailed. The so-called rigor movement of arithmetization, which turned into set theoretical foundationalism, on the one hand, and the axiomatic movement, which originated in Poncelet's or Peirce's emphasis on the continuity principle, on the other hand. Axiomatical mathematics or mathematics as diagrammatic reasoning represents a genetic perspective aiming at generalization, whereas mathematics as arithmetic or set theory is mainly concerned with foundation and separation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. The continuity principle and the principle of the identity of indiscernibles.M. Otte - 1993 - Studia Leibnitiana 25 (1):70-89.
    No categories
     
    Export citation  
     
    Bookmark  
  27.  19
    The Metaphysics of Moral Values and Moral Beauty.Marcus Otte - 2016 - Quaestiones Disputatae 6 (2):44-61.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  53
    Two principles of Leibniz's philosophy in relation to the history of mathematics.Michael Otte - 1993 - Theoria 8 (1):113-125.
  29.  8
    Two Principles of Leibniz’s Philosophy in Relation to the History of Mathematics.Michael Otte - 1993 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 8 (1):113-125.
    A historical case which is most illuminating with respect to the interrelation between philosophy and mathematics is provided by Leibniz’ work. Two principles are fundamental in Leibniz’ philosophy and his philosophy of mathematics: the principle of identity of indiscernibles and the continuity principle. As Gueroult says, to speak about these two principles amounts “to assuming a central perspective from which both the enormity of his conceptual world and the contradictory components it contains become visible”.
    Direct download  
     
    Export citation  
     
    Bookmark  
  30. Reviews: Mathematics and Logic-Analysis and Synthesis in Mathematics. History and Philosophy. [REVIEW]Michael Otte, Marco Panza & I. Grattan-Guinness - 1998 - Annals of Science 55 (4):436-437.