Order:
  1.  19
    Free‐Decomposability in Varieties of Semi‐Heyting Algebras.Manuel Abad, Juan Manuel Cornejo & Patricio Díaz Varela - 2012 - Mathematical Logic Quarterly 58 (3):168-176.
    In this paper we prove that the free algebras in a subvariety equation image of the variety equation image of semi-Heyting algebras are directly decomposable if and only if equation image satisfies the Stone identity.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Free-Decomposability in Varieties of Semi-Heyting Algebras.Manuel Abad, Juan Manuel Cornejo & José Patricio Díaz Varela - 2012 - Mathematical Logic Quarterly 58 (3):168-176.
     
    Export citation  
     
    Bookmark   1 citation  
  3. Varieties of Three-Values Heyting Algebras with a Quantifier.Manuel Abad, J. P. Diaz Varela & L. A. Rueda - 2000 - Studia Logica 65 (2):181-198.
    This paper is devoted to the study of some subvarieties of the variety Q of Q-Heyting algebras, that is, Heyting algebras with a quantifier. In particular, a deeper investigation is carried out in the variety Q subscript 3 of three-valued Q-Heyting algebras to show that the structure of the lattice of subvarieties of Q is far more complicated that the lattice of subvarieties of Heyting algebras. We determine the simple and subdirectly irreducible algebras in Q subscript 3 and we construct (...)
     
    Export citation  
     
    Bookmark   1 citation  
  4.  14
    Zariski‐Type Topology for Implication Algebras.Manuel Abad, Diego Castaño & José P. Díaz Varela - 2010 - Mathematical Logic Quarterly 56 (3):299-309.
    In this work we provide a new topological representation for implication algebras in such a way that its one-point compactification is the topological space given in [1]. Some applications are given thereof.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  17
    Editorial Introduction.Manuel Abad & Alejandro Petrovich - 2011 - Studia Logica 98 (1-2):1-3.
  6.  11
    Free Double Ockham Algebras.Manuel Abad & J. Patricio Díaz Varela - 1999 - Journal of Applied Non-Classical Logics 9 (1):173-183.
    ABSTRACT The variety O2 of double Ockham algebras consists of the algebras of type where and are Ockham algebras. In [16], M. Sequeira introduced several subvarieties of O2. In this paper we give a construction of free double Ockham algebras on a partially ordered set. We also describe free objects for the subvarieties of O2 considered in [16].
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  6
    Zariski-Type Topology for Implication Algebras.Manuel Abad, Diego Castaño & José Patricio Díaz Varela - 2010 - Mathematical Logic Quarterly 56 (3):299-309.
    Direct download  
     
    Export citation  
     
    Bookmark