What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? Neuroconstructivism is a pioneering 2 volume work that sets out a whole new framework for considering the complex topic of development, integrating data from cognitive studies, computational work, and neuroimaging.
Several research groups have identified a network of regions of the adult cortex that are activated during social perception and cognition tasks. In this paper we focus on the development of components of this social brain network during early childhood and test aspects of a particular viewpoint on human functional brain development: “interactive specialization.” Specifically, we apply new data analysis techniques to a previously published data set of event-related potential ~ERP! studies involving 3-, 4-, and 12-month-old infants viewing faces of (...) different orientation and direction of eye gaze. Using source separation and localization methods, several likely generators of scalp recorded ERP are identified, and we describe how they are modulated by stimulus characteristics. We then review the results of a series of experiments concerned with perceiving and acting on eye gaze, before reporting on a new experiment involving young children with autism. Finally, we discuss predictions based on the atypical emergence of the social brain network. (shrink)
Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three (...) mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment. (shrink)
What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? Neuroconstructivism is a pioneering 2 volume work that sets out a whole new framework for considering the complex topic of development, integrating data from cognitive studies, computational work, and neuroimaging.
Eye contact plays a critical role in many aspects of face processing, including the processing of smiles. We propose that this is achieved by a subcortical route, which is activated by eye contact and modulates the cortical areas involve in social cognition, including the processing of facial expression. This mechanism could be impaired in individuals with autism spectrum disorders.
What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? The processes that occur along the way are so complex that any attempt to understand development necessitates a multi-disciplinary approach, integrating data from cognitive studies, computational work, and neuroimaging - an approach till now seldom taken in the study of child development. Neuroconstructivism is a major new 2 volume publication that seeks to redress this balance, presenting an integrative new framework for (...) considering development. In the first volume, the authors review up-to-to date findings from neurobiology, brain imaging, child development, computer and robotic modelling to consider why children's thinking develops the way it does. They propose a new synthesis of development that is based on 5 key principles found to operate at many levels of descriptions. They use these principles to explain what causes a number of key developmental phenomena, including infants' interacting with objects, early social cognitive interactions, and the causes of dyslexia. The "neuroconstructivist" framework also shows how developmental disorders do not arise from selective damage to the normal cognitive system, but instead arise from developmental processes that operate under atypical constraints. How these principles work is illustrated in several case studies ranging from perceptual to social and reading development. Finally, the authors use neuroimaging, behavioural analyses, computational simulations and robotic models to provide a way of understanding the mechanisms and processes that cause development to occur. (shrink)
Metabolic pathways underlying brain function remain largely unexplored during neurodevelopment, predominantly due to the lack of feasible techniques for use with awake infants. Broadband near-infrared spectroscopy provides the opportunity to explore the relationship between cerebral energy metabolism and blood oxygenation/haemodynamics through the measurement of changes in the oxidation state of mitochondrial respiratory chain enzyme cytochrome-c-oxidase alongside haemodynamic changes. We used a bNIRS system to measure ΔoxCCO and haemodynamics during functional activation in a group of 42 typically developing infants aged between (...) 4 and 7 months. bNIRS measurements were made over the right hemisphere over temporal, parietal and central cortical regions, in response to social and non-social visual and auditory stimuli. Both ΔoxCCO and Δ[HbO2] displayed larger activation for the social condition in comparison to the non-social condition. Integration of haemodynamic and metabolic signals revealed networks of stimulus-selective cortical regions that were not apparent from analysis of the individual bNIRS signals. These results provide the first spatially resolved measures of cerebral metabolic activity alongside haemodynamics during functional activation in infants. Measuring synchronised changes in metabolism and haemodynamics have the potential for uncovering the development of cortical specialisation in early infancy. (shrink)
What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? The processes that occur along the way are so complex that any attempt to understand development necessitates a multi-disciplinary approach, integrating data from cognitive studies, computational work, and neuroimaging - an approach till now seldom taken in the study of child development. Neuroconstructivism is a major new 2 volume publication that seeks to redress this balance, presenting an integrative new framework for (...) considering development. Computer and robotic models provide concrete tools for investigating the processes and mechanisms involved in learning and development. Volume 2 illustrates the principles of 'Neuroconstructivist' development, with contributions from 9 different labs across the world. Each of the contributions illustrates how models play a central role in understanding development. The models presented include standard connectionist neural network models as well as multi-agent models. Also included are robotic models emphasizing the need to take embodiment and brain-system interactions seriously. A model of Autism and one of Specific Language Impairment also illustrate how atypical development can be understood in terms of the typical processes of development but operating under restricted conditions. This volume complements Volume 1 by providing concrete examples of how the 'Neuroconstructivist' principles can be grounded within a diverse range of domains, thereby shaping the research agenda in those domains. (shrink)
In this response, we consider four main issues arising from the commentaries to the target article. These include further details of the theory of interactive specialization, the relationship between neuroconstructivism and selectionism, the implications of neuroconstructivism for the notion of representation, and the role of genetics in theories of development. We conclude by stressing the importance of multidisciplinary approaches in the future study of cognitive development and by identifying the directions in which neuroconstructivism can expand in the Twenty-first Century.
We add to the constructivist approach of Quartz & Sejnowski (Q&S) by outlining a specific classification of sources of constraint on the emergence of representations from Elman et al. (1996). We suggest that it is important to consider behavioral constructivism in addition to neural constructivism.