Results for 'Mathematics'

1000+ found
Order:
  1. From Kant to Hilbert: A Source Book in the Foundations of Mathematics.William Bragg Ewald (ed.) - 1996 - Oxford University Press.
    This massive two-volume reference presents a comprehensive selection of the most important works on the foundations of mathematics. While the volumes include important forerunners like Berkeley, MacLaurin, and D'Alembert, as well as such followers as Hilbert and Bourbaki, their emphasis is on the mathematical and philosophical developments of the nineteenth century. Besides reproducing reliable English translations of classics works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare, William Ewald also includes selections from Gauss, Cantor, Kronecker, and Zermelo, all translated here (...)
     
    Export citation  
     
    Bookmark   92 citations  
  2. Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  3. The Reason's Proper Study: Essays Towards a Neo-Fregean Philosophy of Mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as (...)
  4. Mathematics as a Science of Patterns.Michael D. Resnik - 1997 - New York ;Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of (...)--the view that mathematics is about things that really exist. (shrink)
  5. Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford University Press.
    Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable (...)
    Direct download  
     
    Export citation  
     
    Bookmark   172 citations  
  6. Discrete and Continuous: A Fundamental Dichotomy in Mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Naturalism in Mathematics.Penelope Maddy - 1997 - Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both (...)
    Direct download  
     
    Export citation  
     
    Bookmark   155 citations  
  8. Realism in Mathematics.Penelope MADDY - 1990 - Oxford University Prress.
    Mathematicians tend to think of themselves as scientists investigating the features of real mathematical things, and the wildly successful application of mathematics in the physical sciences reinforces this picture of mathematics as an objective study. For philosophers, however, this realism about mathematics raises serious questions: What are mathematical things? Where are they? How do we know about them? Offering a scrupulously fair treatment of both mathematical and philosophical concerns, Penelope Maddy here delineates and defends a novel version (...)
  9. Morality and Mathematics: The Evolutionary Challenge.Justin Clarke-Doane - 2012 - Ethics 122 (2):313-340.
    It is commonly suggested that evolutionary considerations generate an epistemological challenge for moral realism. At first approximation, the challenge for the moral realist is to explain our having many true moral beliefs, given that those beliefs are the products of evolutionary forces that would be indifferent to the moral truth. An important question surrounding this challenge is the extent to which it generalizes. In particular, it is of interest whether the Evolutionary Challenge for moral realism is equally a challenge for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  10.  4
    Philosophy of Mathematical Practice: A Primer for Mathematics Educators.Yacin Hamami & Rebecca Morris - forthcoming - ZDM Mathematics Education.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11.  36
    Exploratory Experimentation in Experimental Mathematics: A Glimpse at the PSLQ Algorithm.Henrik Kragh Sørensen - 2010 - In Benedikt Löwe & Thomas Müller (eds.), PhiMSAMP. Philosophy of Mathematics: Sociological Aspects and Mathematical Practice. College Publications. pp. 341--360.
    In the present paper, I go beyond these examples by bringing into play an example that I nd more experimental in nature, namely that of the use of the so-called PSLQ algorithm in researching integer relations between numerical constants. It is the purpose of this paper to combine a historical presentation with a preliminary exploration of some philosophical aspects of the notion of experiment in experimental mathematics. This dual goal will be sought by analysing these aspects as they are (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  12.  50
    The Mathematics of Deleuze’s Differential Logic and Metaphysics.Simon B. Duffy - 2006 - In Virtual Mathematics: the logic of difference. Clinamen.
    In Difference and Repetition, Deleuze explores the manner by means of which concepts are implicated in the problematic Idea by using a mathematics problem as an example, the elements of which are the differentials of the differential calculus. What I would like to offer in the present paper is a historical account of the mathematical problematic that Deleuze deploys in his philosophy, and an introduction to the role played by this problematic in the development of his philosophy of difference. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  64
    Crunchy Methods in Practical Mathematics.Michael Wood - 2001 - Philosophy of Mathematics Education Journal 14.
    This paper focuses on the distinction between methods which are mathematically "clever", and those which are simply crude, typically repetitive and computer intensive, approaches for "crunching" out answers to problems. Examples of the latter include simulated probability distributions and resampling methods in statistics, and iterative methods for solving equations or optimisation problems. Most of these methods require software support, but this is easily provided by a PC. The paper argues that the crunchier methods often have substantial advantages from the perspectives (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14. Mathematics and Philosophy. Translated by Simon B. Duffy.Alain Badiou - 2006 - In Simon B. Duffy (ed.), Virtual Mathematics: the logic of difference. Clinamen.
    In order to address to the relation between philosophy and mathematics it is first necessary to distinguish the grand style and the little style. The little style painstakingly constructs mathematics as the object for philosophical scrutiny. It is called the little style for a precise reason, because it assigns mathematics to the subservient role of that which supports the definition and perpetuation of a philosophical specialisation. This specialisation is called the ‘philosophy of mathematics’, where the ‘of’ (...)
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  15.  38
    Deleuze and Mathematics.Simon B. Duffy - 2006 - In Virtual Mathematics: the logic of difference. Clinamen.
    The collection Virtual Mathematics: the logic of difference brings together a range of new philosophical engagements with mathematics, using the work of French philosopher Gilles Deleuze as its focus. Deleuze’s engagements with mathematics rely upon the construction of alternative lineages in the history of mathematics in order to reconfigure particular philosophical problems and to develop new concepts. These alternative conceptual histories also challenge some of the self-imposed limits of the discipline of mathematics, and suggest the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  35
    Albert Lautman and the Creative Dialectic of Modern Mathematics. Translated by Simon B. Duffy.Fernando Zalamea - 2011 - In Mathematics, Ideas and the physical real, by Albert Lautman. Continuum.
    It is possible today to observe in hindsight the epistemological landscape of the twentieth century, and the work of Albert Lautman in mathematical philosophy appears as a profound turning point, opening to a true under- standing of creativity in mathematics and its relation with the real. Little understood in its time or even today, Lautman’s work explores the difficult but exciting intersection where modern mathematics, advanced mathe- matical invention, the structural or unitary relations of mathematical knowledge and, finally, (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  17.  3
    The Brentanist Philosophy of Mathematics in Edmund Husserl’s Early Works.Carlo Ierna - 2017 - In Stefania Centrone (ed.), Essays on Husserl’s Logic and Philosophy of Mathematics. Springer Verlag. pp. 147-168.
    A common analysis of Edmund Husserl’s early works on the philosophy of logic and mathematics presents these writings as the result of a combination of two distinct strands of influence: on the one hand a mathematical influence due to his teachers is Berlin, such as Karl Weierstrass, and on the other hand a philosophical influence due to his later studies in Vienna with Franz Brentano. However, the formative influences on Husserl’s early philosophy cannot be so cleanly separated into a (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  18. Husserl and Peirce and the Goals of Mathematics.Mirja Hartimo - 2019 - In Ahti-Veikko Pietarinen & Mohammad Shafiei (eds.), Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cognition. Springer Verlag.
    ABSTRACT. The paper compares the views of Edmund Husserl (1859-1938) and Charles Sanders Peirce (1839-1914) on mathematics around the turn of the century. The two share a view that mathematics is an independent and theoretical discipline. Both think that it is something unrelated to how we actually think, and hence independent of psychology. For both, mathematics reveals the objective and formal structure of the world, and both think that modern mathematics is a Platonist enterprise. Husserl and (...)
     
    Export citation  
     
    Bookmark  
  19. A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics.John P. Burgess & Gideon Rosen - 1997 - Oxford University Press.
    Numbers and other mathematical objects are exceptional in having no locations in space or time or relations of cause and effect. This makes it difficult to account for the possibility of the knowledge of such objects, leading many philosophers to embrace nominalism, the doctrine that there are no such objects, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. This book cuts through a host of technicalities that have obscured (...)
  20.  62
    Is Mathematics Unreasonably Effective?Daniel Waxman - forthcoming - Australasian Journal of Philosophy:1-17.
    Many mathematicians, physicists, and philosophers have suggested that the fact that mathematics—an a priori discipline informed substantially by aesthetic considerations—can be applied to natural s...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  21. Imagination in Mathematics.Andrew Arana - 2016 - In Amy Kind (ed.), Routledge Handbook on the Philosophy of Imagination. Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. The Reality of Numbers: A Physicalist's Philosophy of Mathematics.John Bigelow - 1988 - Oxford University Press.
    Challenging the myth that mathematical objects can be defined into existence, Bigelow here employs Armstrong's metaphysical materialism to cast new light on mathematics. He identifies natural, real, and imaginary numbers and sets with specified physical properties and relations and, by so doing, draws mathematics back from its sterile, abstract exile into the midst of the physical world.
  23. Mathematics and Reality.Mary Leng (ed.) - 2010 - Oxford University Press.
    Mary Leng defends a philosophical account of the nature of mathematics which views it as a kind of fiction. On this view, the claims of our ordinary mathematical theories are more closely analogous to utterances made in the context of storytelling than to utterances whose aim is to assert literal truths.
     
    Export citation  
     
    Bookmark   46 citations  
  24. The Ethics–Mathematics Analogy.Justin Clarke‐Doane - 2020 - Philosophy Compass 15 (1).
    Ethics and mathematics have long invited comparisons. On the one hand, both ethical and mathematical propositions can appear to be knowable a priori, if knowable at all. On the other hand, mathematical propositions seem to admit of proof, and to enter into empirical scientific theories, in a way that ethical propositions do not. In this article, I discuss apparent similarities and differences between ethical (i.e., moral) and mathematical knowledge, realistically construed -- i.e., construed as independent of human mind and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  25. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Stucture.James Franklin - 2014 - Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  26. The Principles of Mathematics.Bertrand Russell - 1903 - Allen & Unwin.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   351 citations  
  27. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Thinking About Mathematics: The Philosophy of Mathematics.Stewart Shapiro - 2000 - Oxford University Press.
    This unique book by Stewart Shapiro looks at a range of philosophical issues and positions concerning mathematics in four comprehensive sections. Part I describes questions and issues about mathematics that have motivated philosophers since the beginning of intellectual history. Part II is an historical survey, discussing the role of mathematics in the thought of such philosophers as Plato, Aristotle, Kant, and Mill. Part III covers the three major positions held throughout the twentieth century: the idea that (...) is logic (logicism), the view that the essence of mathematics is the rule-governed manipulation of characters (formalism), and a revisionist philosophy that focuses on the mental activity of mathematics (intuitionism). Finally, Part IV brings the reader up-to-date with a look at contemporary developments within the discipline. This sweeping introductory guide to the philosophy of mathematics makes these fascinating concepts accessible to those with little background in either mathematics or philosophy. (shrink)
  29.  38
    The Prospects for a Monist Theory of Non-Causal Explanation in Science and Mathematics.Alexander Reutlinger, Mark Colyvan & Karolina Krzyżanowska - forthcoming - Erkenntnis.
    We explore the prospects of a monist account of explanation for both non-causal explanations in science and pure mathematics. Our starting point is the counterfactual theory of explanation (CTE) for explanations in science, as advocated in the recent literature on explanation. We argue that, despite the obvious differences between mathematical and scientific explanation, the CTE can be extended to cover both non-causal explanations in science and mathematical explanations. In particular, a successful application of the CTE to mathematical explanations requires (...)
    Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  30.  94
    On Jain Anekantavada and Pluralism in Philosophy of Mathematics.Landon D. C. Elkind - 2019 - International School for Jain Studies-Transactions 2 (3):13-20.
    I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31. The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
  32.  61
    The Applicability of Mathematics as a Philosophical Problem.Mark Steiner - 1998 - Harvard University Press.
    This book analyzes the different ways mathematics is applicable in the physical sciences, and presents a startling thesis--the success of mathematical physics ...
    Direct download  
     
    Export citation  
     
    Bookmark   59 citations  
  33.  42
    Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  98
    From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s.Paolo Mancosu (ed.) - 1998 - Oxford University Press.
    From Brouwer To Hilbert: The Debate on the Foundations of Mathematics in the 1920s offers the first comprehensive introduction to the most exciting period in the foundation of mathematics in the twentieth century. The 1920s witnessed the seminal foundational work of Hilbert and Bernays in proof theory, Brouwer's refinement of intuitionistic mathematics, and Weyl's predicativist approach to the foundations of analysis. This impressive collection makes available the first English translations of twenty-five central articles by these important contributors (...)
    Direct download  
     
    Export citation  
     
    Bookmark   52 citations  
  35. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century.Paolo Mancosu - 1996 - Oxford University Press.
    The seventeenth century saw dramatic advances in mathematical theory and practice. With the recovery of many of the classical Greek mathematical texts, new techniques were introduced, and within 100 years, the rules of analytic geometry, geometry of indivisibles, arithmatic of infinites, and calculus were developed. Although many technical studies have been devoted to these innovations, Mancosu provides the first comprehensive account of the relationship between mathematical advances of the seventeenth century and the philosophy of mathematics of the period. Starting (...)
  36.  65
    Towards a Philosophy of Real Mathematics.David Corfield - 2003 - Cambridge University Press.
    In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  37.  59
    The Principles of Mathematics Revisited.Jaakko Hintikka - 1996 - Cambridge University Press.
    This book, written by one of philosophy's pre-eminent logicians, argues that many of the basic assumptions common to logic, philosophy of mathematics and metaphysics are in need of change. It is therefore a book of critical importance to logical theory. Jaakko Hintikka proposes a new basic first-order logic and uses it to explore the foundations of mathematics. This new logic enables logicians to express on the first-order level such concepts as equicardinality, infinity, and truth in the same language. (...)
  38. Indispensability Arguments in the Philosophy of Mathematics.Mark Colyvan - 2008 - Stanford Encyclopedia of Philosophy.
    One of the most intriguing features of mathematics is its applicability to empirical science. Every branch of science draws upon large and often diverse portions of mathematics, from the use of Hilbert spaces in quantum mechanics to the use of differential geometry in general relativity. It's not just the physical sciences that avail themselves of the services of mathematics either. Biology, for instance, makes extensive use of difference equations and statistics. The roles mathematics plays in these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  39.  64
    What is Mathematics, Really?Reuben Hersh - 1997 - Oxford University Press.
    Platonism is the most pervasive philosophy of mathematics. Indeed, it can be argued that an inarticulate, half-conscious Platonism is nearly universal among mathematicians. The basic idea is that mathematical entities exist outside space and time, outside thought and matter, in an abstract realm. In the more eloquent words of Edward Everett, a distinguished nineteenth-century American scholar, "in pure mathematics we contemplate absolute truths which existed in the divine mind before the morning stars sang together, and which will continue (...)
    Direct download  
     
    Export citation  
     
    Bookmark   43 citations  
  40. Visual Thinking in Mathematics: An Epistemological Study.Marcus Giaquinto - 2007 - Oxford University Press.
    Visual thinking -- visual imagination or perception of diagrams and symbol arrays, and mental operations on them -- is omnipresent in mathematics. Is this visual thinking merely a psychological aid, facilitating grasp of what is gathered by other means? Or does it also have epistemological functions, as a means of discovery, understanding, and even proof? By examining the many kinds of visual representation in mathematics and the diverse ways in which they are used, Marcus Giaquinto argues that visual (...)
    Direct download  
     
    Export citation  
     
    Bookmark   23 citations  
  41. Philosophical Papers: Volume 1, Mathematics, Matter and Method.Hilary Putnam (ed.) - 1979 - Cambridge University Press.
    Professor Hilary Putnam has been one of the most influential and sharply original of recent American philosophers in a whole range of fields. His most important published work is collected here, together with several new and substantial studies, in two volumes. The first deals with the philosophy of mathematics and of science and the nature of philosophical and scientific enquiry; the second deals with the philosophy of language and mind. Volume one is now issued in a new edition, including (...)
    Direct download  
     
    Export citation  
     
    Bookmark   68 citations  
  42. Realism, Mathematics and Modality.Hartry Field - 1988 - Philosophical Topics 16 (1):57-107.
  43. The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Phenomenology, Logic, and the Philosophy of Mathematics.Richard Tieszen - 2005 - Cambridge University Press.
    Offering a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics, this 2005 book is divided into three parts. Part I contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay on phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope (...)
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  45. Explanation in Ethics and Mathematics: Debunking and Dispensability.Uri D. Leibowitz & Neil Sinclair (eds.) - 2016 - Oxford University Press UK.
    How far should our realism extend? For many years philosophers of mathematics and philosophers of ethics have worked independently to address the question of how best to understand the entities apparently referred to by mathematical and ethical talk. But the similarities between their endeavours are not often emphasised. This book provides that emphasis. In particular, it focuses on two types of argumentative strategies that have been deployed in both areas. The first—debunking arguments—aims to put pressure on realism by emphasising (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  54
    From Mathematics to Philosophy.Hao Wang - 1974 - London.
    First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  47.  35
    Logic and Philosophy of Mathematics in the Early Husserl.Stefania Centrone - 2010 - Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  48.  47
    Otávio Bueno* and Steven French.**Applying Mathematics: Immersion, Inference, Interpretation. [REVIEW]Anthony F. Peressini - 2020 - Philosophia Mathematica 28 (1):116-127.
    Otávio Bueno* * and Steven French.** ** Applying Mathematics: Immersion, Inference, Interpretation. Oxford University Press, 2018. ISBN: 978-0-19-881504-4 978-0-19-185286-2. doi:10.1093/oso/9780198815044. 001.0001. Pp. xvii + 257.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  44
    Varieties of Constructive Mathematics.D. S. Bridges - 1987 - Cambridge University Press.
    This is an introduction to, and survey of, the constructive approaches to pure mathematics. The authors emphasise the viewpoint of Errett Bishop's school, but intuitionism. Russian constructivism and recursive analysis are also treated, with comparisons between the various approaches included where appropriate. Constructive mathematics is now enjoying a revival, with interest from not only logicans but also category theorists, recursive function theorists and theoretical computer scientists. This account for non-specialists in these and other disciplines.
    Direct download  
     
    Export citation  
     
    Bookmark   38 citations  
  50.  76
    Teaching and Learning Guide For: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000