Search results for 'Mechanics' (try it on Scholar)

1000+ found
Order:
  1.  60
    Valia Allori, How to Make Sense of Quantum Mechanics : Fundamental Physical Theories and Primitive Ontology.
    Quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. The aim of the paper is to explore a particular approach to fundamental physical theories, the one based on the notion of primitive ontology. This approach, when applied to quantum mechanics, makes it a paradox-free theory.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  2. Mauro Dorato & Matteo Morganti (2013). Grades of Individuality. A Pluralistic View of Identity in Quantum Mechanics and in the Sciences. Philosophical Studies 163 (3):591-610.
    This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   10 citations  
  3. Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (2008). On the Common Structure of Bohmian Mechanics and the Ghirardi-Rimini-Weber Theory. British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   26 citations  
  4. P. A. M. Dirac (1930). The Principles of Quantum Mechanics. Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   141 citations  
  5.  55
    Alyssa Ney, Separability, Locality, and Higher Dimensions in Quantum Mechanics.
    *A shortened version of this paper will appear in Current Controversies in Philosophy of Science, Dasgupta and Weslake, eds. Routledge.* This paper describes the case that can be made for a high-dimensional ontology in quantum mechanics based on the virtues of avoiding both nonseparability and non locality.
    Direct download  
     
    Export citation  
     
    My bibliography  
  6.  67
    Thomas William Barrett (2015). On the Structure of Classical Mechanics. British Journal for the Philosophy of Science 66 (4):801-828.
    The standard view is that the Lagrangian and Hamiltonian formulations of classical mechanics are theoretically equivalent. Jill North, however, argues that they are not. In particular, she argues that the state-space of Hamiltonian mechanics has less structure than the state-space of Lagrangian mechanics. I will isolate two arguments that North puts forward for this conclusion and argue that neither yet succeeds. 1 Introduction2 Hamiltonian State-space Has less Structure than Lagrangian State-space2.1 Lagrangian state-space is metrical2.2 Hamiltonian state-space is (...)
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  7. J. S. Bell (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our current understanding (...)
     
    Export citation  
     
    My bibliography   252 citations  
  8. Henry P. Stapp (1993). Mind, Matter, and Quantum Mechanics. Springer Verlag.
    In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics...
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   24 citations  
  9. A. Wilson (2012). Objective Probability in Everettian Quantum Mechanics. British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose (...)
    Direct download (10 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  10.  56
    Charles T. Sebens & Sean M. Carroll (forthcoming). Self-Locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics. British Journal for the Philosophy of Science:axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  11. Fernando Birman (2009). Quantum Mechanics and the Plight of Physicalism. Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  12.  91
    Edward MacKinnon (2016). Why Interpret Quantum Mechanics. Open Journal of Philosophy 6:86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that led (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  13. Albert Sol? (2013). Bohmian Mechanics Without Wave Function Ontology. Studies in History and Philosophy of Science Part B 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  14. Michael Esfeld (2013). Ontic Structural Realism and the Interpretation of Quantum Mechanics. European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  15. Marius Stan (2013). Kant's Third Law of Mechanics: The Long Shadow of Leibniz. Studies in History and Philosophy of Science Part A 44 (3):493-504.
    This paper examines the origin, range and meaning of the Principle of Action and Reaction in Kant’s mechanics. On the received view, it is a version of Newton’s Third Law. I argue that Kant meant his principle as foundation for a Leibnizian mechanics. To find a ‘Newtonian’ law of action and reaction, we must look to Kant’s ‘dynamics,’ or theory of matter. I begin, in part I, by noting marked differences between Newton’s and Kant’s laws of action and (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  16.  27
    K. B. Wharton (2007). Time-Symmetric Quantum Mechanics. Foundations of Physics 37 (1):159-168.
    A time-symmetric formulation of nonrelativistic quantum mechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantum mechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantum mechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon measurement, thereby realigning quantum (...) with an important fundamental symmetry. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  17. Marius Stan (forthcoming). Euler, Newton, and Foundations for Mechanics. In Chris Smeenk & Eric Schliesser (eds.), The Oxford Handbook of Newton. Oxford University Press.
    This chapter looks at Euler’s relation to Newton, and at his role in the rise of ‘Newtonian’ mechanics. It aims to give a sense of Newton’s complicated legacy for Enlightenment science, and to raise awareness that some key ‘Newtonian’ results really come from Euler.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  18.  26
    Antonio Vassallo (2015). Can Bohmian Mechanics Be Made Background Independent? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52:242-250.
    The paper presents an inquiry into the question regarding the compatibility of Bohmian mechanics, intended as a non-local theory of moving point-like particles, with background independence. This issue is worth being investigated because, if the Bohmian framework has to be of some help in developing new physics, it has to be compatible with the most well-established traits of modern physics, background independence being one of such traits. The paper highlights the fact that the notion of background independence in the (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  19.  99
    Massimiliano Badino, How Typical! An Epistemological Analysis of Typicality in Statistical Mechanics.
    The recent use of typicality in statistical mechanics for foundational purposes has stirred an important debate involving both philosophers and physicists. While this debate customarily focuses on technical issues, in this paper I try to approach the problem from an epistemological angle. The discussion is driven by two questions: (1) What does typicality add to the concept of measure? (2) What kind of explanation, if any, does typicality yield? By distinguishing the notions of `typicality-as-vast-majority' and `typicality-as-best-exemplar', I argue that (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  20. Peter Bokulich (2005). Niels Bohr's Generalization of Classical Mechanics. Foundations of Physics 35 (3):347-371.
    We clarify Bohr’s interpretation of quantum mechanics by demonstrating the central role played by his thesis that quantum theory is a rational generalization of classical mechanics. This thesis is essential for an adequate understanding of his insistence on the indispensability of classical concepts, his account of how the quantum formalism gets its meaning, and his belief that hidden variable interpretations are impossible.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  21.  28
    Darrin W. Belousek (2003). Formalism, Ontology and Methodology in Bohmian Mechanics. Foundations of Science 8 (2):109-172.
    The relationship between mathematical formalism, physical interpretation and epistemological appraisal in the practice of physical theorizing is considered in the context of Bohmian mechanics. After laying outthe formal mathematical postulates of thetheory and recovering the historical roots ofthe present debate over the meaning of Bohmianmechanics from the early debate over themeaning of Schrödinger's wave mechanics,several contemporary interpretations of Bohmianmechanics in the literature are discussed andcritiqued with respect to the aim of causalexplanation and an alternative interpretationis proposed. Throughout, the (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   10 citations  
  22.  23
    Gabriel Vacariu, Quantum Mechanics: Unbelievable Similarities Between My EDWs and Bill Bill Poirier’s ‘Many Interacting Worlds’ (2016).
    Chapter 12 -/- Quantum mechanics: Unbelievable similarities between my EDWs and Bill Bill Poirier’s ‘Many Interacting Worlds’ (2016) .
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  23.  30
    Jeffrey A. Barrett (2015). Pure Wave Mechanics and the Very Idea of Empirical Adequacy. Synthese 192 (10):3071-3104.
    Hugh Everett III proposed his relative-state formulation of pure wave mechanics as a solution to the quantum measurement problem. He sought to address the theory’s determinate record and probability problems by showing that, while counterintuitive, pure wave mechanics was nevertheless empirically faithful and hence empirical acceptable. We will consider what Everett meant by empirical faithfulness. The suggestion will be that empirical faithfulness is well understood as a weak variety of empirical adequacy. The thought is that the very idea (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  24. Jeffrey Barrett (2011). Everett's Pure Wave Mechanics and the Notion of Worlds. European Journal for Philosophy of Science 1 (2):277-302.
    Everett (1957a, b, 1973) relative-state formulation of quantum mechanics has often been taken to involve a metaphysical commitment to the existence of many splitting worlds each containing physical copies of observers and the objects they observe. While there was earlier talk of splitting worlds in connection with Everett, this is largely due to DeWitt’s (Phys Today 23:30–35, 1970) popular presentation of the theory. While the thought of splitting worlds or parallel universes has captured the popular imagination, Everett himself favored (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  25. Valia Allori (2015). Quantum Mechanics and Paradigm Shifts. Topoi 2015 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  26.  90
    Giovanni Villani (2014). Structured System in Chemistry: Comparison with Mechanics and Biology. [REVIEW] Foundations of Chemistry 16 (2):107-123.
    The fundamental concept of structured chemical system has been introduced and analysed in this paper. This concept, as in biology but not in physics, is very important in chemistry. In fact, the main chemical concepts (molecule and compound) have been identified as systemic concepts and their use in chemical explanation can only be justified in this approach. The fundamental concept of “environment” has been considered and then the system concept in mechanics, chemistry and biology. The differences and the analogies (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  27.  18
    Robert C. Bishop (2004). Nonequilibrium Statistical Mechanics Brussels–Austin Style. Studies in History and Philosophy of Science Part B 35 (1):1-30.
    The fundamental problem on which Ilya Prigogine and the Brussels–Austin Group have focused can be stated briefly as follows. Our observations indicate that there is an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms like uranium, or the mixing of cream in coffee). Most of the fundamental equations of physics are time reversible, however, presenting an apparent conflict between our theoretical descriptions and experimental observations. Many have thought that the observed arrow of time (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  28.  18
    Jean-Sébastien Boisvert & Louis Marchildon (2013). Absorbers in the Transactional Interpretation of Quantum Mechanics. Foundations of Physics 43 (3):294-309.
    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  29.  15
    David Ellerman (2016). Quantum Mechanics Over Sets: A Pedagogical Model with Non-Commutative Finite Probability Theory as its Quantum Probability Calculus. Synthese 2016:1-34.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The previous (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  30.  37
    Slobodan Perovic (2008). Why Were Matrix Mechanics and Wave Mechanics Considered Equivalent? Studies in History and Philosophy of Science Part B 39 (2):444-461.
    A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger's 1926 proof, a myth. Schrödinger supposedly failed to prove isomorphism, or even a weaker equivalence (“Schrödinger-equivalence”) of the mathematical structures of the two theories; developments in the early 1930s, especially the work of mathematician von Neumann provided sound proof of mathematical equivalence. The alleged agreement about the Copenhagen Interpretation, predicated to (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  31. S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich (1996). Axiomatic Foundations of Quantum Mechanics Revisited: The Case for Systems. International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  32. Tomasz Bigaj (2007). Counterfactuals and Non-Locality of Quantum Mechanics: The Bedford–Stapp Version of the GHZ Theorem. Foundations of Science 12 (1):85-108.
    In the paper, the proof of the non-locality of quantum mechanics, given by Bedford and Stapp (1995), and appealing to the GHZ example, is analyzed. The proof does not contain any explicit assumption of realism, but instead it uses formal methods and techniques of the Lewis calculus of counterfactuals. To ascertain the validity of the proof, a formal semantic model for counterfactuals is constructed. With the help of this model it can be shown that the proof is faulty, because (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  33. Wayne C. Myrvold (2016). Probabilities in Statistical Mechanics. In Christopher Hitchcock & Alan Hájek (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  34. Carsten Held (2015). Einstein’s Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle. Foundations of Physics 45 (9):1002-1018.
    Einstein made several attempts to argue for the incompleteness of quantum mechanics, not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss the argument (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  35. Matthew J. Brown (2009). Relational Quantum Mechanics and the Determinacy Problem. British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the ‘determinacy problem', (...)
    Direct download (13 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  36. Nicholas Maxwell (1976). Towards a Micro Realistic Version of Quantum Mechanics, Part I. Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a propensity micro realistic version (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  37. Maarten Van Dyck (2003). The Roles of One Thought Experiment in Interpreting Quantum Mechanics. Werner Heisenberg Meets Thomas Kuhn. Philosophica 72 (3):79-103.
    Recent years saw the rise of an interest in the roles and significance of thought experiments in different areas of human thinking. Heisenberg's gamma ray microscope is no doubt one of the most famous examples of a thought experiment in physics. Nevertheless, this particular thought experiment has not received much detailed attention in the philosophical literature on thought experiments up to date, maybe because of its often claimed inadequacies. In this paper, I try to do two things: to provide an (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  38. Valia Allori & Nino Zanghi (2008). On the Classical Limit of Quantum Mechanics. Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  39.  88
    Slobodan Perovic (2006). Schrödinger's Interpretation of Quantum Mechanics and the Relevance of Bohr's Experimental Critique. Studies in History and Philosophy of Science Part B 37 (2):275-297.
    E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space–time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their dogmatic pursuit of the complementarity (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  40.  19
    Christian Forstner (2008). The Early History of David Bohm's Quantum Mechanics Through the Perspective of Ludwik Fleck's Thought-Collectives. Minerva 46 (2):215-229.
    This paper analyses the early history of David Bohm’s mechanics from the perspective of Ludwik Fleck’s thought-collectives and shows how the thought-style of the scientific community limits the possible modes of thinking and what new possibilities for the construction of a new theory arise if these limits are removed.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  41.  19
    Vassilios Karakostas (2014). Correspondence Truth and Quantum Mechanics. Axiomathes 24 (3):343-358.
    The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either ‘true’ or ‘false’, describing what is actually the case at (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  42.  60
    Marius Stan (forthcoming). Metaphysical Foundations of Neoclassical Mechanics. In Michela Massimi & Angela Breitenbach (eds.), Kant and the Laws of Nature. Cambridge University Press.
    I examine here if Kant’s metaphysics of matter can support any late-modern versions of classical mechanics. I argue that in principle it can, by two different routes. I assess the interpretive costs of each approach, and recommend the most promising strategy: a mass-point approach.
    Direct download  
     
    Export citation  
     
    My bibliography  
  43.  33
    Valia Allori (2013). Book Review Of: The Road to Maxwell's Demon: Conceptual Foundations of Statistical Mechanics. [REVIEW] International Studies in the Philosophy of Science 27 (4):453-456.
    Book review of Meir Hemmo and Orly Shenker's book "The Road to Maxwell's Demon: Conceptual Foundations of Statistical Mechanics.".
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  44.  63
    S. E. Perez Bergliaffa, Gustavo E. Romero & H. Vucetich (1993). Axiomatic Foundations of Non-Relativistic Quantum Mechanics: A Realistic Approach. International Journal of Theoretical Physics 32 (9):1507-1522.
    A realistic axiomatic formulation of nonrelativistic quantum mechanics for a single microsystem with spin is presented, from which the most important theorems of the theory can be deduced. In comparison with previous formulations, the formal aspect has been improved by the use of certain mathematical theories, such as the theory of equipped spaces, and group theory. The standard formalism is naturally obtained from the latter, starting from a central primitive concept: the Galilei group.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography   5 citations  
  45. David John Miller (2008). Quantum Mechanics as a Consistency Condition on Initial and Final Boundary Conditions. Studies in History and Philosophy of Science Part B 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements belong in (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  46.  43
    Manuel Bächtold (2008). Interpreting Quantum Mechanics According to a Pragmatist Approach. Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  47. Alex Byrne & N. Hall (1999). Chalmers on Consciousness and Quantum Mechanics. Philosophy of Science 66 (3):370-90.
    The textbook presentation of quantum mechanics, in a nutshell, is this. The physical state of any isolated system evolves deterministically in accordance with Schrödinger's equation until a "measurement" of some physical magnitude M (e.g. position, energy, spin) is made. Restricting attention to the case where the values of M are discrete, the system's pre-measurement state-vector f is a linear combination, or "superposition", of vectors f1, f2,... that individually represent states that..
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  48. D. J. Miller & Matt Farr, On the Possibility of Ontological Models of Quantum Mechanics.
    It is an unresolved question in quantum mechanics whether quantum states apply to individual quantum systems, or to ensembles of quantum systems. We show by way of a thought experiment that quantum states apply only to ensembles of quantum systems. A further unresolved question is whether quantum systems possess ontic states. If a quantum state is the state of an ensemble, as we claim, the answer to this question is that quantum states are not ontic. However, a notable recent (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  49. Nicholas Maxwell (1976). Towards a Micro Realistic Version of Quantum Mechanics, Part II. Foundations of Physics 6 (6):661-676.
    In this paper, possible objections to the propensity microrealistic version of quantum mechanics proposed in Part I are answered. This version of quantum mechanics is compared with the statistical, particle microrealistic viewpoint, and a crucial experiment is proposed designed to distinguish between these to microrealistic versions of quantum mechanics.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  50.  3
    Gabriel Vacariu, The UNBELIEVABLE Similar Ideas Between Theise and Menas’ Ideas (2016) and My Ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the Mind-Brain Problem, Quantum Mechanics, Etc.).
    The UNBELIEVABLE similar ideas between Theise and Menas’ ideas (2016) and my ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the mind-brain problem, quantum mechanics, etc.) -/- (2016) Theise D. Neil (Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA) and Kafatos C. Menas (bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; cSchmid College of Science & Technology, Chapman University, Orange, CA, USA) (2016), REVIEW - Fundamental awareness: (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000