4 found
Order:
  1.  21
    On cardinal characteristics of Yorioka ideals.Miguel A. Cardona & Diego A. Mejía - 2019 - Mathematical Logic Quarterly 65 (2):170-199.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  36
    Filter-linkedness and its effect on preservation of cardinal characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  15
    Continuum many different things: Localisation, anti-localisation and Yorioka ideals.Miguel A. Cardona, Lukas Daniel Klausner & Diego A. Mejía - 2024 - Annals of Pure and Applied Logic 175 (7):103453.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  19
    The covering number of the strong measure zero ideal can be above almost everything else.Miguel A. Cardona, Diego A. Mejía & Ismael E. Rivera-Madrid - 2022 - Archive for Mathematical Logic 61 (5):599-610.
    We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal \. As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that \<\mathrm {cov}<\mathrm {cof}\), which is the first consistency result where more than two cardinal invariants (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark