Order:
See also
Ming Hsiung
Zhongshan University
  1.  21
    Some Open Questions About Degrees of Paradoxes.Ming Hsiung - manuscript
    We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former leads to a contradiction under a condition, the latter does so under the very condition. This paper aims at setting forth the theoretical framework of the theory of paradoxicality degree, and putting forward (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  65
    What Paradoxes Depend On.Ming Hsiung - 2018 - Synthese:1-27.
    This paper gives a definition of self-reference on the basis of the dependence relation given by Leitgeb (2005), and the dependence digraph by Beringer & Schindler (2015). Unlike the usual discussion about self-reference of paradoxes centering around Yablo's paradox and its variants, I focus on the paradoxes of finitary characteristic, which are given again by use of Leitgeb's dependence relation. They are called 'locally finite paradoxes', satisfying that any sentence in these paradoxes can depend on finitely many sentences. I prove (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  3.  5
    Boolean Paradoxes and Revision Periods.Ming Hsiung - 2017 - Studia Logica 105 (5):881-914.
    According to the revision theory of truth, the paradoxical sentences have certain revision periods in their valuations with respect to the stages of revision sequences. We find that the revision periods play a key role in characterizing the degrees of paradoxicality for Boolean paradoxes. We prove that a Boolean paradox is paradoxical in a digraph, iff this digraph contains a closed walk whose height is not any revision period of this paradox. And for any finitely many numbers greater than 1, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  46
    Jump Liars and Jourdain’s Card Via the Relativized T-Scheme.Ming Hsiung - 2009 - Studia Logica 91 (2):239-271.
    A relativized version of Tarski's T-scheme is introduced as a new principle of the truth predicate. Under the relativized T-scheme, the paradoxical objects, such as the Liar sentence and Jourdain's card sequence, are found to have certain relative contradictoriness. That is, they are contradictory only in some frames in the sense that any valuation admissible for them in these frames will lead to a contradiction. It is proved that for any positive integer n, the n-jump liar sentence is contradictory in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  49
    Equiparadoxicality of Yablo's Paradox and the Liar.Ming Hsiung - 2013 - Journal of Logic, Language and Information 22 (1):23-31.
    It is proved that Yablo’s paradox and the Liar paradox are equiparadoxical, in the sense that their paradoxicality is based upon exactly the same circularity condition—for any frame ${\mathcal{K}}$ , the following are equivalent: (1) Yablo’s sequence leads to a paradox in ${\mathcal{K}}$ ; (2) the Liar sentence leads to a paradox in ${\mathcal{K}}$ ; (3) ${\mathcal{K}}$ contains odd cycles. This result does not conflict with Yablo’s claim that his sequence is non-self-referential. Rather, it gives Yablo’s paradox a new significance: (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  33
    Some Questions About Degrees of Paradoxes.Ming Hsiung - manuscript
    We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former leads to a contradiction under a condition, the latter does so under the very condition. This paper aims at providing some basic open questions about the paradoxes around the notion of the degree (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  12
    Tarski's Theorem and Liar-Like Paradoxes.Ming Hsiung - 2014 - Logic Journal of the IGPL 22 (1):24-38.
    Tarski's theorem essentially says that the Liar paradox is paradoxical in the minimal reflexive frame. We generalise this result to the Liar-like paradox $\lambda^\alpha$ for all ordinal $\alpha\geq 1$. The main result is that for any positive integer $n = 2^i(2j+1)$, the paradox $\lambda^n$ is paradoxical in a frame iff this frame contains at least a cycle the depth of which is not divisible by $2^{i+1}$; and for any ordinal $\alpha \geq \omega$, the paradox $\lambda^\alpha$ is paradoxical in a frame (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  33
    An Intuitionistic Characterization of Classical Logic.Ming Hsiung - 2008 - Journal of Philosophical Logic 37 (4):299 - 317.
    By introducing the intensional mappings and their properties, we establish a new semantical approach of characterizing intermediate logics. First prove that this new approach provides a general method of characterizing and comparing logics without changing the semantical interpretation of implication connective. Then show that it is adequate to characterize all Kripke_complete intermediate logics by showing that each of these logics is sound and complete with respect to its (unique) ‘weakest characterization property’ of intensional mappings. In particular, we show that classical (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark