31 found
Order:
Disambiguations
Paul B. Larson [24]Paul Larson [17]
  1.  54
    Separating stationary reflection principles.Paul Larson - 2000 - Journal of Symbolic Logic 65 (1):247-258.
    We present a variety of (ω 1 ,∞)-distributive forcings which when applied to models of Martin's Maximum separate certain well known reflection principles. In particular, we do this for the reflection principles SR, SR α (α ≤ ω 1 ), and SRP.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  2.  63
    Some results about (+) proved by iterated forcing.Tetsuya Ishiu & Paul B. Larson - 2012 - Journal of Symbolic Logic 77 (2):515-531.
    We shall show the consistency of CH+ᄀ(+) and CH+(+)+ there are no club guessing sequences on ω₁. We shall also prove that ◊⁺ does not imply the existence of a strong club guessing sequence ω₁.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3.  29
    Iterated elementary embeddings and the model theory of infinitary logic.John T. Baldwin & Paul B. Larson - 2016 - Annals of Pure and Applied Logic 167 (3):309-334.
  4.  53
    The canonical function game.Paul B. Larson - 2005 - Archive for Mathematical Logic 44 (7):817-827.
    The canonical function game is a game of length ω1 introduced by W. Hugh Woodin which falls inside a class of games known as Neeman games. Using large cardinals, we show that it is possible to force that the game is not determined. We also discuss the relationship between this result and Σ22 absoluteness, cardinality spectra and Π2 maximality for H(ω2) relative to the Continuum Hypothesis.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5.  22
    Almost galois ω-stable classes.John T. Baldwin, Paul B. Larson & Saharon Shelah - 2015 - Journal of Symbolic Logic 80 (3):763-784.
  6.  32
    Bounding by canonical functions, with ch.Paul Larson & Saharon Shelah - 2003 - Journal of Mathematical Logic 3 (02):193-215.
    We show that the members of a certain class of semi-proper iterations do not add countable sets of ordinals. As a result, starting from suitable large cardinals one can obtain a model in which the Continuum Hypothesis holds and every function from ω1 to ω1 is bounded on a club by a canonical function for an ordinal less than ω2.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  38
    The size of $\tilde{T}$.Paul Larson - 2000 - Archive for Mathematical Logic 39 (7):541-568.
    Given a stationary subset T of $\omega_{1}$ , let $\tilde{T}$ be the set of ordinals in the interval $(\omega_{1}, \omega_{2})$ which are necessarily in the image of T by any embedding derived from the nonstationary ideal. We consider the question of the size of $\tilde{T}$ , givenT, and use Martin's Maximum and $\mathbb{P}_{max}$ to give some answers.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  8.  43
    Martin’s Maximum and definability in H.Paul B. Larson - 2008 - Annals of Pure and Applied Logic 156 (1):110-122.
    In [P. Larson, Martin’s Maximum and the axiom , Ann. Pure App. Logic 106 135–149], we modified a coding device from [W.H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Walter de Gruyter & Co, Berlin, 1999] and the consistency proof of Martin’s Maximum from [M. Foreman, M. Magidor, S. Shelah, Martin’s Maximum. saturated ideals, and non-regular ultrafilters. Part I, Annal. Math. 127 1–47] to show that from a supercompact limit of supercompact cardinals one could force Martin’s (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  24
    Maximal Tukey types, P-ideals and the weak Rudin–Keisler order.Konstantinos A. Beros & Paul B. Larson - 2023 - Archive for Mathematical Logic 63 (3):325-352.
    In this paper, we study some new examples of ideals on $$\omega $$ with maximal Tukey type (that is, maximal among partial orders of size continuum). This discussion segues into an examination of a refinement of the Tukey order—known as the weak Rudin–Keisler order—and its structure when restricted to these ideals of maximal Tukey type. Mirroring a result of Fremlin (Note Mat 11:177–214, 1991) on the Tukey order, we also show that there is an analytic P-ideal above all other analytic (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  18
    Canonical models for fragments of the axiom of choice.Paul Larson & Jindřich Zapletal - 2017 - Journal of Symbolic Logic 82 (2):489-509.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  15
    Splitting stationary sets from weak forms of Choice.Paul Larson & Saharon Shelah - 2009 - Mathematical Logic Quarterly 55 (3):299-306.
    Working in the context of restricted forms of the Axiom of Choice, we consider the problem of splitting the ordinals below λ of cofinality θ into λ many stationary sets, where θ < λ are regular cardinals. This is a continuation of [4].
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  36
    The stationary set splitting game.Paul B. Larson & Saharon Shelah - 2008 - Mathematical Logic Quarterly 54 (2):187-193.
    The stationary set splitting game is a game of perfect information of length ω1 between two players, unsplit and split, in which unsplit chooses stationarily many countable ordinals and split tries to continuously divide them into two stationary pieces. We show that it is possible in ZFC to force a winning strategy for either player, or for neither. This gives a new counterexample to Σ22 maximality with a predicate for the nonstationary ideal on ω1, and an example of a consistently (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  30
    Increasing δ 1 2 and Namba-style forcing.Richard Ketchersid, Paul Larson & Jindřich Zapletal - 2007 - Journal of Symbolic Logic 72 (4):1372-1378.
    We isolate a forcing which increases the value of δ12 while preserving ω₁ under the assumption that there is a precipitous ideal on ω₁ and a measurable cardinal.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  31
    Saturation, Suslin trees and meager sets.Paul Larson - 2005 - Archive for Mathematical Logic 44 (5):581-595.
    We show, using a variation of Woodin’s partial order ℙ max , that it is possible to destroy the saturation of the nonstationary ideal on ω 1 by forcing with a Suslin tree. On the other hand, Suslin trees typcially preserve saturation in extensions by ℙ max variations where one does not try to arrange it otherwise. In the last section, we show that it is possible to have a nonmeager set of reals of size ℵ1, saturation of the nonstationary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  44
    A uniqueness theorem for iterations.Paul Larson - 2002 - Journal of Symbolic Logic 67 (4):1344-1350.
    If M is a countable transitive model of $ZFC+MA_{\aleph_{1}}$ , then for every real x there is a unique shortest iteration $j: M \rightarrow N$ with $x \in N$ , or none at all.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  13
    Forcing Axioms and the Definability of the Nonstationary Ideal on the First Uncountable.Stefan Hoffelner, Paul Larson, Ralf Schindler & W. U. Liuzhen - forthcoming - Journal of Symbolic Logic:1-18.
    We show that under $\mathsf {BMM}$ and “there exists a Woodin cardinal, $"$ the nonstationary ideal on $\omega _1$ cannot be defined by a $\Pi _1$ formula with parameter $A \subset \omega _1$. We show that the same conclusion holds under the assumption of Woodin’s $(\ast )$ -axiom. We further show that there are universes where $\mathsf {BPFA}$ holds and $\text {NS}_{\omega _1}$ is $\Pi _1(\{\omega _1\})$ -definable. Lastly we show that if the canonical inner model with one Woodin cardinal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  21
    Foundations of Mathematics.Andrés Eduardo Caicedo, James Cummings, Peter Koellner & Paul B. Larson (eds.) - 2016 - American Mathematical Society.
    This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  68
    ℙmax variations for separating club guessing principles.Tetsuya Ishiu & Paul B. Larson - 2012 - Journal of Symbolic Logic 77 (2):532-544.
    In his book on P max [7], Woodin presents a collection of partial orders whose extensions satisfy strong club guessing principles on ω | . In this paper we employ one of the techniques from this book to produce P max variations which separate various club guessing principles. The principle (+) and its variants are weak guessing principles which were first considered by the second author [4] while studying games of length ω | . It was shown in [1] that (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  19.  32
    Compact spaces, elementary submodels, and the countable chain condition.Lúcia R. Junqueira, Paul Larson & Franklin D. Tall - 2006 - Annals of Pure and Applied Logic 144 (1-3):107-116.
    Given a space in an elementary submodel M of H, define XM to be X∩M with the topology generated by . It is established, using anti-large-cardinals assumptions, that if XM is compact and its regular open algebra is isomorphic to that of a continuous image of some power of the two-point discrete space, then X=XM. Assuming in addition, the result holds for any compact XM satisfying the countable chain condition.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  20.  42
    Regular embeddings of the stationary tower and Woodin's Σ 2 2 maximality theorem.Richard Ketchersid, Paul B. Larson & Jindřich Zapletal - 2010 - Journal of Symbolic Logic 75 (2):711-727.
    We present Woodin's proof that if there exists a measurable Woodin cardinal δ, then there is a forcing extension satisfying all $\Sigma _{2}^{2}$ sentences ϕ such that CH + ϕ holds in a forcing extension of V by a partial order in V δ . We also use some of the techniques from this proof to show that if there exists a stationary limit of stationary limits of Woodin cardinals, then in a homogeneous forcing extension there is an elementary embedding (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  21.  19
    A model of $$\mathsf {ZFA}+ \mathsf {PAC}$$ ZFA + PAC with no outer model of $$\mathsf {ZFAC}$$ ZFAC with the same pure part.Paul Larson & Saharon Shelah - 2018 - Archive for Mathematical Logic 57 (7-8):853-859.
    We produce a model of \ such that no outer model of \ has the same pure sets, answering a question asked privately by Eric Hall.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  29
    (1 other version)An $mathbb{S}_{max}$ Variation for One Souslin Tree.Paul Larson - 1999 - Journal of Symbolic Logic 64 (1):81-98.
    We present a variation of the forcing $\mathbb{S}_{max}$ as presented in Woodin [4]. Our forcing is a $\mathbb{P}_{max}$-style construction where each model condition selects one Souslin tree. In the extension there is a Souslin tree T$_G$ which is the direct limit of the selected Souslin trees in the models of the generic. In some sense, the generic extension is a maximal model of "there exists a minimal Souslin tree," with T$_G$ being this minimal tree. In particular, in the extension this (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  21
    Coding with canonical functions.Paul B. Larson & Saharon Shelah - 2017 - Mathematical Logic Quarterly 63 (5):334-341.
    A function f from ω1 to the ordinals is called a canonical function for an ordinal α if f represents α in any generic ultrapower induced by forcing with math formula. We introduce here a method for coding sets of ordinals using canonical functions from ω1 to ω1. Combining this approach with arguments from, we show, assuming the Continuum Hypothesis, that for each cardinal κ there is a forcing construction preserving cardinalities and cofinalities forcing that every subset of κ is (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  29
    Proper Forcings and Absoluteness in LProper Forcing and L.Paul B. Larson, Itay Neeman & Jindrich Zapletal - 2002 - Bulletin of Symbolic Logic 8 (4):548.
  25.  38
    Three Days of Ω-logic( Mathematical Logic and Its Applications).Paul B. Larson - 2011 - Annals of the Japan Association for Philosophy of Science 19:57-86.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  38
    The Filter dichotomy and medial limits.Paul B. Larson - 2009 - Journal of Mathematical Logic 9 (2):159-165.
    The Filter Dichotomy says that every uniform nonmeager filter on the integers is mapped by a finite-to-one function to an ultrafilter. The consistency of this principle was proved by Blass and Laflamme. A medial limit is a universally measurable function from [Formula: see text] to the unit interval [0, 1] which is finitely additive for disjoint sets, and maps singletons to 0 and ω to 1. Christensen and Mokobodzki independently showed that the Continuum Hypothesis implies the existence of medial limits. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  68
    The Nonstationary Ideal in the Pmax Extension.Paul B. Larson - 2007 - Journal of Symbolic Logic 72 (1):138 - 158.
    The forcing construction Pmax, invented by W. Hugh Woodin, produces a model whose collection of subsets of ω₁ is in some sense maximal. In this paper we study the Boolean algebra induced by the nonstationary ideal on ω₁ in this model. Among other things we show that the induced quotient does not have a simply definable form. We also prove several results about saturation properties of the ideal in this extension.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  14
    Martin's Maximum and the.Paul Larson - 2000 - Annals of Pure and Applied Logic 106 (1-3):135-149.
    Assuming the existence of a supercompact limit of supercompact cardinals, we modify the original consistency proof of Martin's Maximum to obtain a model in which MM holds but the axiom fails.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  27
    (2 other versions)Games of countable length. Sets and Proofs. [REVIEW]Paul B. Larson - 2005 - Bulletin of Symbolic Logic 11 (4):542-544.
  30.  34
    Itay Neeman and Jindřich Zapletal. Proper forcings and absoluteness in L. Commentationes mathematicae Universitatis Carolinae, vol. 39 , pp. 281–301. - Itay Neeman and Jindřich Zapletal. Proper forcing and L. The journal of symbolic logic, vol. 66 , pp. 801–810. [REVIEW]Paul B. Larson - 2002 - Bulletin of Symbolic Logic 8 (4):548-550.
  31.  36
    (1 other version)W. Hugh Woodin. The axiom of determinacy, forcing axioms, and the nonstationary ideal. De Gruyter series in logic and its applications, no. 1. Walter de Gruyter, Berlin and New York 1999, vi + 934 pp. [REVIEW]Paul B. Larson - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.