46 found
Order:
  1.  7
    Recursion-Theoretic Hierarchies.Peter G. Hinman - 1978 - Springer Verlag.
  2.  26
    Classical Recursion Theory.Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
  3.  17
    A Survey of Mučnik and Medvedev Degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  9
    Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers.Peter G. Hinman - 1990 - Journal of Symbolic Logic 55 (3):1307-1308.
  5.  31
    Some Applications of Forcing to Hierarchy Problems in Arithmetic.Peter G. Hinman - 1969 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (20-22):341-352.
  6.  9
    Density of the Medvedev Lattice of Π0 1 Classes.Douglas Cenzer & Peter G. Hinman - 2003 - Archive for Mathematical Logic 42 (6):583-600.
    The partial ordering of Medvedev reducibility restricted to the family of Π0 1 classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π0 1 class, which we call a ``c.e. separating class''. We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  7.  6
    Density of the Medvedev Lattice of Π [Sup0][Sub1].Douglas Cenzer & Peter G. Hinman - 2003 - Archive for Mathematical Logic 42 (6):583-600.
    .The partial ordering of Medvedev reducibility restricted to the family of Π01 classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π01 class, which we call a ``c.e. separating class''. We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  8.  9
    Some Applications of Forcing to Hierarchy Problems in Arithmetic.Peter G. Hinman - 1969 - Mathematical Logic Quarterly 15 (20‐22):341-352.
  9.  37
    Logical Truth Revisited.Peter G. Hinman, Jaegwon Kim & Stephen P. Stich - 1968 - Journal of Philosophy 65 (17):495-500.
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  10.  30
    Degrees of Difficulty of Generalized R.E. Separating Classes.Douglas Cenzer & Peter G. Hinman - 2008 - Archive for Mathematical Logic 46 (7-8):629-647.
    Important examples of $\Pi^0_1$ classes of functions $f \in {}^\omega\omega$ are the classes of sets (elements of ω 2) which separate a given pair of disjoint r.e. sets: ${\mathsf S}_2(A_0, A_1) := \{f \in{}^\omega2 : (\forall i < 2)(\forall x \in A_i)f(x) \neq i\}$ . A wider class consists of the classes of functions f ∈ ω k which in a generalized sense separate a k-tuple of r.e. sets (not necessarily pairwise disjoint) for each k ∈ ω: ${\mathsf S}_k(A_0,\ldots,A_k-1) := (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Fundamentals of Mathematical Logic.Peter G. Hinman - 2007 - Bulletin of Symbolic Logic 13 (3):363-365.
  12.  2
    [Omnibus Review].Peter G. Hinman - 1972 - Journal of Symbolic Logic 37 (2):409-410.
  13.  15
    Jump Embeddings in the Turing Degrees.Peter G. Hinman & Theodore A. Slaman - 1991 - Journal of Symbolic Logic 56 (2):563-591.
  14.  50
    Iterated Relative Recursive Enumerability.Peter A. Cholak & Peter G. Hinman - 1994 - Archive for Mathematical Logic 33 (5):321-346.
    A result of Soare and Stob asserts that for any non-recursive r.e. setC, there exists a r.e.[C] setA such thatA⊕C is not of r.e. degree. A setY is called [of]m-REA (m-REA[C] [degree] iff it is [Turing equivalent to] the result of applyingm-many iterated ‘hops’ to the empty set (toC), where a hop is any function of the formX→X ⊕W e X . The cited result is the special casem=0,n=1 of our Theorem. Form=0,1, and any (m+1)-REA setC, ifC is not ofm-REA (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  15.  6
    Recursion on the Countable Functionals.Peter G. Hinman - 1984 - Journal of Symbolic Logic 49 (2):668-670.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  17
    Meeting of the Association for Symbolic Logic: Chicago, 1985.Andreas Blass, Louise Hay & Peter G. Hinman - 1986 - Journal of Symbolic Logic 51 (2):507-510.
  17.  2
    Meeting of the Association for Symbolic Logic, Chicago, 1985.Andreas Blass, Louise Hay & Peter G. Hinman - 1986 - Journal of Symbolic Logic 51 (2):507-510.
  18.  1
    Hierarchies of Predicates of Finite Types.Peter G. Hinman - 1971 - Journal of Symbolic Logic 36 (1):146-147.
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  10
    Generalized Recursion Theory.Jens Erik Fenstad & Peter G. Hinman (eds.) - 1974 - New York: American Elsevier Pub. Co..
    Provability, Computability and Reflection.
    Direct download  
     
    Export citation  
     
    Bookmark  
  20.  7
    A. D. Tajmanov. O Klassé Modéléj, Zamknutom Otnositél'no Prámogo Proizvédéniá . Doklady Akadémii Nauk SSSR, Vol. 127 , Pp. 1173–1175. - A. D. Tajmanov. O Klassé Modéléj, Zamknutyh Otnositél'no Prámogo Proizvédéniá . Izvéstiá Akadémii Nauk SSSR, Sériá Matématičéskaá, Vol. 24 , Pp. 493–510. [REVIEW]Peter G. Hinman - 1965 - Journal of Symbolic Logic 30 (2):253-254.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  21.  16
    Bukowský L. And Příkry K.. Some Matamathematical Properties of Measurable Cardinals. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 14 , Pp. 9–14. [REVIEW]Peter G. Hinman - 1968 - Journal of Symbolic Logic 33 (3):476-476.
  22.  6
    Clarke D. A.. Hierarchies of Predicates of Finite Types. Memoirs of the American Mathematical Society, No. 51. American Mathematical Society, Providence 1964, 95 Pp. [REVIEW]Peter G. Hinman - 1971 - Journal of Symbolic Logic 36 (1):146-147.
  23.  9
    Degrees of Continuous Functionals.Peter G. Hinman - 1973 - Journal of Symbolic Logic 38 (3):393-395.
    The partial order structure of degrees of unsolvability represented by continuous type-2 functionals is a proper extension of the partial order structure of type-1 degrees.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  24.  9
    Fitting Melvin. Fundamentals of Generalized Recursion Theory. Studies in Logic and the Foundations of Mathematics, Vol. 105. North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1981, Xx + 307 Pp. [REVIEW]Peter G. Hinman - 1986 - Journal of Symbolic Logic 51 (4):1078-1079.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  4
    Hierarchies of Effective Descriptive Set Theory.Peter G. Hinman - 1972 - Journal of Symbolic Logic 37 (4):758-759.
  26.  12
    Kozlova Z. I.. Aksioma konstruktivnosti i kratnaá otdélimost' i néotdélimost' v klassah analitičéskoj iérarhii . Sibirskij matématičéskij žurnal, vol. 5 , pp. 1239–1258. [REVIEW]Peter G. Hinman - 1973 - Journal of Symbolic Logic 38 (3):529-530.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27.  7
    Luis E. Sanchis. Recursive Functional. Studies in Logic and the Foundations of Mathematics, Vol. 131. North-Holland, Amsterdam Etc. 1992, Xii + 277 Pp. [REVIEW]Peter G. Hinman - 1993 - Journal of Symbolic Logic 58 (4):1468-1469.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  21
    Normann Dag. Recursion on the Countable Functionals. Lecture Notes in Mathematics, Vol. 811. Springer-Verlag, Berlin, Heidelberg, and New York, 1980, VIII + 191 Pp.Normann Dag. The Continuous Functionals; Computations, Recursions and Degrees. Annals of Mathematical Logic, Vol. 21 , Pp. 1–26. [REVIEW]Peter G. Hinman - 1984 - Journal of Symbolic Logic 49 (2):668-670.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  10
    P. G. Odifreddi. Classical Recursion Theory. Volume II. Studies in Logic and the Foundations of Mathematics, Vol. 143. Elsevier, Amsterdam Etc. 1999, Xvi + 949 Pp. [REVIEW]Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  9
    Piergiorgio Odifreddi. Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers. Studies in Logic and the Foundations of Mathematics, Vol. 125. North-Holland, Amsterdam Etc. 1989, Xvii + 668 Pp. [REVIEW]Peter G. Hinman - 1990 - Journal of Symbolic Logic 55 (3):1307-1308.
  31. Review: A. D. Tajmanov, On a Class of Models, Closed with Respect to Direct Product. [REVIEW]Peter G. Hinman - 1965 - Journal of Symbolic Logic 30 (2):253-254.
  32.  13
    R. C. Lyndon. Existential Horn Sentences. Proceedings of the American Mathematical Society, Vol. 10 , Pp. 994–998.Peter G. Hinman - 1965 - Journal of Symbolic Logic 30 (2):253.
  33.  4
    Review: D. A. Clarke, Hierarchies of Predicates of Finite Types. [REVIEW]Peter G. Hinman - 1971 - Journal of Symbolic Logic 36 (1):146-147.
  34. Review: Dag Normann, Recursion on the Countable Functionals; Dag Normann, The Continuous Functionals; Computations, Recursions and Degrees. [REVIEW]Peter G. Hinman - 1984 - Journal of Symbolic Logic 49 (2):668-670.
     
    Export citation  
     
    Bookmark  
  35.  3
    Review: L. Bukowsky, K. Prikry, Some Metamathematical Properties of Measurable Cardinals. [REVIEW]Peter G. Hinman - 1968 - Journal of Symbolic Logic 33 (3):476-476.
  36.  3
    Review: Luis E. Sanchis, Recursive Functionals. [REVIEW]Peter G. Hinman - 1993 - Journal of Symbolic Logic 58 (4):1468-1469.
    Direct download  
     
    Export citation  
     
    Bookmark  
  37.  4
    Review: Melvin Fitting, Fundamentals of Generalized Recursion Theory. [REVIEW]Peter G. Hinman - 1986 - Journal of Symbolic Logic 51 (4):1078-1079.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  4
    Review: Piergiorgio Odifreddi, Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers. [REVIEW]Peter G. Hinman - 1990 - Journal of Symbolic Logic 55 (3):1307-1308.
  39.  3
    Review: Petr Vopenka, Die Konstruktion von Modellen der Mengenlehre Nach der Methode der Ultraprodukte. [REVIEW]Peter G. Hinman - 1968 - Journal of Symbolic Logic 33 (3):475-476.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  40. Review: R. C. Lyndon, Existential Horn Sentences. [REVIEW]Peter G. Hinman - 1965 - Journal of Symbolic Logic 30 (2):253-253.
  41.  3
    Review: Yiannis N. Moschovakis, Hyperanalytic Predicates; Thomas J. Grilliot, Hierarchies Based on Objects of Finite Type. [REVIEW]Peter G. Hinman - 1971 - Journal of Symbolic Logic 36 (1):147-148.
  42.  14
    V. I. Amstislavskij. Téorétiko-Množéstvénnyé Operacii I Rékursivnyé Iérarhii. Doklady Akadémii Nauk SSSR, Vol. 169 , Pp. 995–998. - V. I. Amstislavskij. Set-Theoretical Operations and Recursive Hierarchies. English Translation of the Preceding by E. Wesley. Soviet Mathematics, Vol. 7 No. 4 , Pp. 1029–1032. - V. I. Amstislavskij. Rasširénié Rékursivnyh Iérarhij I R-Opéracii. Doklady Akadémii Nauk SSSR, Vol. 180 , Pp. 1023–1026. - V. I. Amstislavskij. Expansion of Recursive Hierarchies and R-Operations. English Translation of the Preceding by A. Yablonsky. Soviet Mathematics, Vol. 9 No. 3 , Pp. 703–706. - V. I. Amstislavskij. O Razložénii Téla Množéstv, Polučaémyh R-Opéraciéj Nad Rékursivnymi Množéstvami. Doklady Akadémii Nauk SSSR, Vol. 191 , Pp. 743–746. - V. I. Amstislavskij. On the Decomposition of a Field of Sets Obtained by an R-Operation Over Recursive Sets. English Translation of the Preceding by S. Shepherd. Soviet Mathematics, Vol. 11 No. 2 , Pp. 419–422. - V. I. Amstislavskij. [REVIEW]Peter G. Hinman - 1972 - Journal of Symbolic Logic 37 (2):409-410.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  5
    Vopěnka Petr. Postroénié modeléj téorii mnozéstv métodom ul'traproizvédéniá . Zeitschrift für mathematische Logik und Grundtagen der Mathematik, vol. 8 , pp. 293–304. [REVIEW]Peter G. Hinman - 1968 - Journal of Symbolic Logic 33 (3):475-476.
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  44.  7
    Yiannis N. Moschovakis. Hyperanalytic Predicates. Transactions of the American Mathematical Society, Vol. 129 , Pp. 249–282. - Thomas J. Grilliot. Hierarchies Based on Objects of Finite Type. The Journal of Symbolic Logic, Vol. 34 , Pp. 177–182. [REVIEW]Peter G. Hinman - 1971 - Journal of Symbolic Logic 36 (1):147-148.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45. [Omega]-Bibliography of Mathematical Logic.G. H. Müller, Wolfgang Lenski & Peter G. Hinman - 1987
     
    Export citation  
     
    Bookmark  
  46. REVIEWS-Classical Recursion Theory, Volume II.P. Odifreddi & Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-72.
     
    Export citation  
     
    Bookmark