Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...) be a topological space X together with a continuous function f. f can be thought of in temporal terms, moving the points of the topological space from one moment to the next. Dynamic topological logics are the logics of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological logics are defined for a trimodal language with an S4-ish topological modality □ , and two temporal modalities, ○ and * , both interpreted using the continuous function f. In particular, ○ expresses f’s action on X from one moment to the next, and * expresses the asymptotic behaviour of f. (shrink)
In the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question (...) of strong completeness for these spaces has remained open, together with the more general question of strong completeness for any dense-in-itself metric space. In this paper, we prove that S4 is strongly complete for any dense-in-itself metric space. (shrink)
Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...) be a topological space X together with a continuous function f. f can be thought of in temporal terms, moving the points of the topological space from one moment to the next. Dynamic topological logics are the logics of dynamic topological systems, just as S4 is the logic of topological spaces. Dynamic topological logics are defined for a trimodal language with an S4-ish topological modality □, and two temporal modalities, ○ and *, both interpreted using the continuous function f. In particular, ○ expresses f’s action on X from one moment to the next, and * expresses the asymptotic behaviour of f. (shrink)
In response to the liar’s paradox, Kripke developed the fixed-point semantics for languages expressing their own truth concepts. Kripke’s work suggests a number of related fixed-point theories of truth for such languages. Gupta and Belnap develop their revision theory of truth in contrast to the fixed-point theories. The current paper considers three natural ways to compare the various resulting theories of truth, and establishes the resulting relationships among these theories. The point is to get a sense of the lay of (...) the land amid a variety of options. Our results will also provide technical fodder for the methodological remarks of the companion paper to this one. (shrink)
We define a propositionally quantified intuitionistic logic Hπ + by a natural extension of Kripke's semantics for propositional intutionistic logic. We then show that Hπ+ is recursively isomorphic to full second order classical logic. Hπ+ is the intuitionistic analogue of the modal systems S5π +, S4π +, S4.2π +, K4π +, Tπ +, Kπ + and Bπ +, studied by Fine.
In ‘Fair Infinite Lotteries’ (FIL), Wenmackers and Horsten use non-standard analysis to construct a family of nicely-behaved hyperrational-valued probability measures on sets of natural numbers. Each probability measure in FIL is determined by a free ultrafilter on the natural numbers: distinct free ultrafilters determine distinct probability measures. The authors reply to a worry about a consequent ‘arbitrariness’ by remarking, “A different choice of free ultrafilter produces a different ... probability function with the same standard part but infinitesimal differences.” They illustrate (...) this remark with the example of the sets of odd and even numbers. Depending on the ultrafilter, either each of these sets has probability 1/2, or the set of odd numbers has a probability infinitesimally higher than 1/2 and the set of even numbers infinitesimally lower. The point of the current paper is simply that the amount of indeterminacy is much greater than acknowledged in FIL: there are sets of natural numbers whose probability is far more indeterminate than that of the set of odd or the set of even numbers. (shrink)
In this paper, we define some consequence relations based on supervaluation semantics for partial models, and we investigate their properties. For our main consequence relation, we show that natural versions of the following fail: upwards and downwards Lowenheim-Skolem, axiomatizability, and compactness. We also consider an alternate version for supervaluation semantics, and show both axiomatizability and compactness for the resulting consequence relation.
We begin to fill a lacuna in the relevance logic enterprise by providing a foundational analysis of identity in relevance logic. We consider rival interpretations of identity in this context, settling on the relevant indiscernibility interpretation, an interpretation related to Dunn's relevant predication project. We propose a general test for the stability of an axiomatisation of identity, relative to this interpretation, and we put various axiomatisations to this test. We fill our discussion out with both formal and philosophical remarks on (...) identity in relevance logic. (shrink)
The topological semantics for modal logic interprets a standard modal propositional language in topological spaces rather than Kripke frames: the most general logic of topological spaces becomes S4. But other modal logics can be given a topological semantics by restricting attention to subclasses of topological spaces: in particular, S5 is logic of the class of almost discrete topological spaces, and also of trivial topological spaces. Dynamic Topological Logic interprets a modal language enriched with two unary temporal connectives, next and henceforth. (...) DTL interprets the extended language in dynamic topological systems: a DTS is a topological space together with a continuous function used to interpret the temporal connectives. In this paper, we axiomatize four conservative extensions of S5, and show them to be the logic of continuous functions on almost discrete spaces, of homeomorphisms on almost discrete spaces, of continuous functions on trivial spaces and of homeomorphisms on trivial spaces. (shrink)
In The Revision Theory of Truth (MIT Press), Gupta and Belnap (1993) claim as an advantage of their approach to truth "its consequence that truth behaves like an ordinary classical concept under certain conditions—conditions that can roughly be characterized as those in which there is no vicious reference in the language." To clarify this remark, they define Thomason models, nonpathological models in which truth behaves like a classical concept, and investigate conditions under which a model is Thomason: they argue that (...) a model is Thomason when there is no vicious reference in it. We extend their investigation, considering notions of nonpathologicality and senses of "no vicious reference" generated both by revision theories of truth and by fixedpoint theories of truth. We show that some of the fixed-point theories have an advantage analogous to that which Gupta and Belnap claim for their approach, and that at least one revision theory does not. This calls into question the claim that the revision theories have a distinctive advantage in this regard. (shrink)
We critically investigate and refine Dunn's relevant predication, his formalisation of the notion of a real property. We argue that Dunn's original dialectical moves presuppose some interpretation of relevant identity, though none is given. We then re-motivate the proposal in a broader context, considering the prospects for a classical formalisation of real properties, particularly of Geach's implicit distinction between real and ''Cambridge'' properties. After arguing against these prospects, we turn to relevance logic, re-motivating relevant predication with Geach's distinction in mind. (...) Finally we draw out some consequences of Dunn's proposal for the theory of identity in relevance logic. (shrink)
We define a propositionally quantified intuitionistic logic $\mathbf{H}\pi +$ by a natural extension of Kripke's semantics for propositional intutionistic logic. We then show that $\mathbf{H}\pi+$ is recursively isomorphic to full second order classical logic. $\mathbf{H}\pi+$ is the intuitionistic analogue of the modal systems $\mathbf{S}5\pi +, \mathbf{S}4\pi +, \mathbf{S}4.2\pi +, \mathbf{K}4\pi +, \mathbf{T}\pi +, \mathbf{K}\pi +$ and $\mathbf{B}\pi +$, studied by Fine.
Michael Kremer defines fixed-point logics of truth based on Saul Kripke’s fixed point semantics for languages expressing their own truth concepts. Kremer axiomatizes the strong Kleene fixed-point logic of truth and the weak Kleene fixed-point logic of truth, but leaves the axiomatizability question open for the supervaluation fixed-point logic of truth and its variants. We show that the principal supervaluation fixed point logic of truth, when thought of as consequence relation, is highly complex: it is not even analytic. We also (...) consider variants, engendered by a stronger notion of ‘fixed point’, and by variant supervaluation schemes. A ‘logic’ is often thought of, not as a consequence relation, but as a set of sentences – the sentences true on each interpretation. We axiomatize the supervaluation fixed-point logics so conceived. (shrink)
Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊕ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...) Benthem et al show that S4 ⊕ S4 is the bimodal logic of the particular product space Q × Q, leaving open the question of whether S4 ⊕ S4 is also complete for the product space R × R. We answer this question in the negative. (shrink)
Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 ⊗ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. In this (...) paper, we axiomatize the topological product of S4 and S5, which is strictly between S4 ⊗ S5 and S4 × S5. We also apply our techniques to (1) proving a conjecture of van Benthem et al concerning the logic of products of Alexandrov spaces with arbitrary topological spaces; and (2) solving a problem in quantified modal logic: in particular, it is known that standard quantified S4 without identity, QS4, is complete in Kripke semantics with expanding domains; we show that QS4 is complete not only in topological semantics with constant domains (which was already shown by Rasiowa and Sikorski), but wrt the topological space Q with a constant countable domain. (shrink)
This paper reformulates and decides a certain conjecture in Dunn's 'Relevant Predication 1: The Formal Theory' (Journal of Philosophical Logic 16, 347-381, 1987). This conjecture of Dunn's relates his object-language characterisation of a property's being relevant in a variable x to certain grammatical characterisations of relevance, analogous to some given by Helman, in 'Relevant Implication and Relevant Functions' (to appear in Entailment: The Logic of Relevance and Necessity, vol. 2, by Alan Ross Anderson, Nuel Belnap, and J. Michael Dunn et (...) al.) In the course of the investigation this paper also investigates Kit Fine's semantics for quantified relevance logics, which appears in his appropriately titled 'Semantics for Quantified Relevance Logics'. (shrink)
In "The Logical Structure of Linguistic Commitment I" (The Journal of Philosophical Logic 23 (1994), 369-400), we sketch a linguistic theory (inspired by Brandom's Making it Explicit) which includes an "expressivist" account of the implication connective, →: the role of → is to "make explicit" the inferential proprieties among possible commitments which proprieties determine, in part, the significances of sentences. This motivates reading (A → B) as "commitment to A is, in part, commitment to B". Our project is to study (...) the logic of →. LSLC I approximates (A → B) as "anyone committed to A is committed to B", ignoring issues of whether A is relevant to B. The present paper includes considerations of relevance, motivating systems of relevant commitment entailment related to the systems of commitment entailment of LSLC I. We also consider the relevance logics that result from a commitment reading of Fine's semantics for relevance logics, a reading that Fine suggests. (shrink)
Let ${{\mathcal L}^{\square\circ}}$ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality □ and a temporal modality ◦, understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language ${{\mathcal L}^{\square\circ}}$ by interpreting ${{\mathcal L}^{\square\circ}}$ in dynamic topological systems, i.e., ordered pairs 〈X, f〉, where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown (...) that S4C is sound and complete for this semantics. S4C is also complete for continuous functions on Cantor space (Mints and Zhang, Kremer), and on the real plane (Fernández Duque); but incomplete for continuous functions on the real line (Kremer and Mints, Slavnov). Here we show that S4C is complete for continuous functions on the rational numbers. (shrink)
Fine and Kripke extended S5, S4, S4.2 and such to produce propositionally quantified systems , , : given a Kripke frame, the quantifiers range over all the sets of possible worlds. is decidable and, as Fine and Kripke showed, many of the other systems are recursively isomorphic to second-order logic. In the present paper I consider the propositionally quantified system that arises from the topological semantics for S4, rather than from the Kripke semantics. The topological system, which I dub , (...) is strictly weaker than its Kripkean counterpart. I prove here that second-order arithmetic can be recursively embedded in . In the course of the investigation, I also sketch a proof of Fine's and Kripke's results that the Kripkean system is recursively isomorphic to second-order logic. (shrink)
R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was `no'. In the present paper, we extend S4, first with propositional quantifiers, to the system S4π+; and then with definite propositional descriptions, to the system S4π+ lp . We show that relevant implication can in some sense be defined in the modal system S4π+ lp , although it cannot be defined in S4π+.
The simplest combination of unimodal logics \ into a bimodal logic is their fusion, \, axiomatized by the theorems of \. Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product \. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product \, using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been (...) extensively studied, but much less is known about topological products. The goal of the current paper is to give necessary and sufficient conditions for the topological product to match the frame product, for Kripke complete extensions of \. (shrink)
There is an intuition, notoriously difficult to formalise, that only some predicates express real properties. J. M. Dunn formalises this intuition with relevance logic, proposing a notion of relevant predication. For each first order formula Ax, Dunn specifies another formula that is intuitively interpreted as "Ax expresses a real property". Chapter I calls such an approach an object language approach, since the claim that Ax expresses a real property is rendered as a formula in the object language. On a metalanguage (...) approach, on the other hand, the claim that Ax expresses a real property would be metalinguistic, mentioning but not using the formula Ax. ;Our Introduction begins by investigating Dunn's motivation for relevant predication, and argues that it implicitly presupposes some interpretation of identity. Indeed, part of the dissertation's work is to use relevant predication as a key to a coherent account of relevant identity. ;Chapter I re-motivates relevant predication. We consider P. Geach's distinction between real and "Cambridge" change, and suggest that there is an underlying distinction between real and Cambridge predicates. We further argue that no classical object language approach can formalise this distinction. So we turn to relevance logic, remotivating relevant predication, with Geach's distinction in mind. ;In light of this new motivation, we argue that relevant prediction relies on a logically weak notion of identity, according to which "x = y" means "x and y share all relevant properties". Identity is taken up in a more technical setting in Chapters IV and V. ;Subsequent chapters investigate technical issues that flow from Chapter I. Chapter II investigates metalinguistic grammatical characterisations of relevant predication. Chapter III concerns the semantics of first order relevance logic. Chapter IV investigates the identity in R and its relationship to relevant predication. In particular, Chapter IV argues against introducing the axiom, $\to$ Ay), in relevance logic, since the resulting systems are unstable, in a sense motivated by the notion of relevant identity underlying Dunn's notion of relevant predication. Finally Chapter V investigates the possibility of a coherent theory of identity in R's modal relatives ${\bf R}\sp\square$ and E. (shrink)
Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S4 and S4 is S4 \ S4, i.e., the fusion of S4 and S4: this logic is strictly weaker than the frame product S4 × S4. Indeed, van (...) Benthem et al. show that S4 \ S4 is the bimodal logic of the particular product space , leaving open the question of whether S4 \ S4 is also complete for the product space . We answer this question in the negative. (shrink)
Let $\mathcal{L}$ be a propositional language with standard Boolean connectives plus two modalities: an S4-ish topological modality $\square$ and a temporal modality $\bigcirc$ , understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language $\mathcal{L}$ by interpreting $\mathcal{L}$ in dynamic topological systems, i.e. ordered pairs $\langle X, f\rangle$ , where X is a topological space and f is a continuous function on X. Artemov, Davoren and Nerode have axiomatized a logic S4C, and have shown (...) that S4C is sound and complete for this semantics. Zhang and Mints have shown that S4C is complete relative to a particular topological space, Cantor space. The current paper produces an alternate proof of the Zhang-Mints result. (shrink)
§1. Introduction. When truth-theoretic paradoxes are generated, two factors seem to be at play: the behaviour that truth intuitively has; and the facts about which singular terms refer to which sentences, and so on. For example, paradoxicality might be partially attributed to the contingent fact that the singular term, "the italicized sentence on page one", refers to the sentence, The italicized sentence on page one is not true. Factors of this second kind might be represented by a ground model: an (...) interpretation of all the names, function symbols, and predicates in the potentially self-referential language under study, with the exception of the predicate "x is true". Formally, suppose that L is an uninterpreted first order language. M = 〈D, I〉 is a classical model for L if D is a nonempty set; and I is a function assigning to each name of L a member of D, to each n-place function symbol of L a function from Dn to D, and to each nonlogical n-place predicate of L a function from Dn to {t, f}. Suppose furthermore that L+ is obtained by adding a new one-place predicate T to L, and that L has a quote name ‘A’ for each sentence A of L+. We follow Gupta and Belnap [5] in defining S =df {A: A is a sentences of L+}. A classical model M = 〈D, I〉 for L is a ground model for L iff both S ⊆ D, and I(‘A’) = A for each A ∈ S. A classical ground model for L is a representation of the supposedly unproblematic fragment of L+: a representation of which terms refer to which objects, and of which objects have which nonsemantic properties. (shrink)
R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was `no'. In the present paper, we extend $\mathbf{S4}$, first with propositional quantifiers, to the system $\mathbf{S4\pi}+$; and then with definite propositional descriptions, to the system $\mathbf{S4\pi}+^{lp}$. We show that relevant implication can in some sense be defined in the modal system $\mathbf{S4\pi}+^{lp}$, although it cannot be defined in $\mathbf{S4\pi}+$.
modality , understood as ‘next’. We extend the topological semantic for S4 to a semantics for the language L by interpreting L in dynamic topological systems, i.e. ordered pairs X, f , where X is a topological space and f is a..
In the topological semantics, quantified intuitionistic logic, QH, is known to be strongly complete not only for the class of all topological spaces but also for some particular topological spaces — for example, for the irrational line, ${\Bbb P}$, and for the rational line, ${\Bbb Q}$, in each case with a constant countable domain for the quantifiers. Each of ${\Bbb P}$ and ${\Bbb Q}$ is a separable zero-dimensional dense-in-itself metrizable space. The main result of the current article generalizes these known (...) results: QH is strongly complete for any zero-dimensional dense-in-itself metrizable space with a constant domain of cardinality ≤ the space’s weight; consequently, QH is strongly complete for any separable zero-dimensional dense-in-itself metrizable space with a constant countable domain. We also prove a result that follows from earlier work of Moerdijk: if we allow varying domains for the quantifiers, then QH is strongly complete for any dense-in-itself metrizable space with countable domains. (shrink)
In the topological semantics for modal logic, S4 is well known to be complete for the rational line and for the real line: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete but strongly complete, for the rational line. But no similarly easy amendment is available for the real line. In an earlier paper, we proved a general theorem: S4 (...) is strongly complete for any dense-in-itself metric space. Strong completeness for the real line is a special case. In the current paper, we give a proof of strong completeness tailored to the special case of the real line: the current proof is simpler and more accessible than the proof of the more general result and involves slightly different techniques. We proceed in two steps: first, we show that S4 is strongly complete for the space of finite and infinite binary sequences, equipped with a natural topology; and then we show that there is an interior map from the real line onto this space. (shrink)
The simplest bimodal combination of unimodal logics \ and \ is their fusion, \, axiomatized by the theorems of \ for \ and of \ for \, and the rules of modus ponens, necessitation for \ and for \, and substitution. Shehtman introduced the frame product \, as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced (...) the topological product \, as the logic of the products of certain topological spaces. For almost all well-studies logics, we have \, for example, \. Van Benthem et al. show, by contrast, that \. It is straightforward to define the product of a topological space and a frame: the result is a topologized frame, i.e., a set together with a topology and a binary relation. In this paper, we introduce topological-frame products \ of modal logics, providing a complete axiomatization of \, whenever \ is a Kripke complete Horn axiomatizable extension of the modal logic D: these extensions include \ and \, but not \ or \. We leave open the problem of axiomatizing \, \, and other related logics. When \, our result confirms a conjecture of van Benthem et al. concerning the logic of products of Alexandrov spaces with arbitrary topological spaces. (shrink)
Philip Kremer, Department of Philosophy, McMaster University Note: The following version of this paper does not contain the proofs of the stated theorems. A longer version, complete with proofs, is forthcoming. §1. Introduction. In "The truth is never simple" and its addendum, Burgess conducts a breathtakingly comprehensive survey of the complexity of the set of truths which arise when you add a truth predicate to arithmetic, and interpret that predicate according to the fixed point semantics or the revision-theoretic semantics for (...) languages expressing their own truth concepts. Burgess considers various sets that can be said to represent truth in this context, and shows that their complexity ranges from Π11 or Σ11 to Π12 or Σ12. Thus, enriching arithmetic with a truth predicate increases its complexity, which is otherwise only ∆11. (shrink)