A. J. Ayer was one of the foremost analytical philosophers of the twentieth century, and was known as a brilliant and engaging speaker. In essays based on his influential Dewey Lectures, Ayer addresses some of the most critical and controversial questions in epistemology and the philosophy of science, examining the nature of inductive reasoning and grappling with the issues that most concerned him as a philosopher. This edition contains revised and expanded versions of the lectures and two additional essays. Ayer (...) begins by considering Hume's formulation of the problem of induction and then explores the inferences on which we base our beliefs in factual matters. In other essays, he defines the three kinds of probability that inform inductive reasoning and examines the various criteria for verifiability and falsifiability. In his extensive introduction, Graham Macdonald discusses the arguments in _Probability and Evidence_, how they relate to Ayer's other works, and their influence in contemporary philosophy. He also provides a brief biographical sketch of Ayer, and includes a bibliography of works about and in response to _Probability and Evidence_. (shrink)
This book compares various approaches to the interpretation of quantum mechanics, in particular those which are related to the key words "the Copenhagen interpretation", "the antirealist view", "quantum logic" and "hidden variable theory". Using the concept of "correlation" carefully analyzed in the context of classical probability and in quantum theory, the author provides a framework to compare these approaches. He also develops an extension of probability theory to construct a local hidden variable theory. The book should be of (...) interest for physicists and philosophers of science interested in the foundations of quantum theory. (shrink)
This book explores a question central to philosophy--namely, what does it take for a belief to be justified or rational? According to a widespread view, whether one has justification for believing a proposition is determined by how probable that proposition is, given one's evidence. In this book this view is rejected and replaced with another: in order for one to have justification for believing a proposition, one's evidence must normically support it--roughly, one's evidence must make the falsity of that proposition (...) abnormal in the sense of calling for special, independent explanation. This conception of justification bears upon a range of topics in epistemology and beyond. Ultimately, this way of looking at justification guides us to a new, unfamiliar picture of how we should respond to our evidence and manage our own fallibility. This picture is developed here. (shrink)
The book was planned and written as a single, sustained argument. But earlier versions of a few parts of it have appeared separately. The object of this book is both to establish the existence of the paradoxes, and also to describe a non-Pascalian concept of probability in terms of which one can analyse the structure of forensic proof without giving rise to such typical signs of theoretical misfit. Neither the complementational principle for negation nor the multiplicative principle for conjunction (...) applies to the central core of any forensic proof in the Anglo-American legal system. There are four parts included in this book. Accordingly, these parts have been written in such a way that they may be read in different orders by different kinds of reader. (shrink)
I describe a realist, ontologically objective interpretation of probability, "far-flung frequency (FFF) mechanistic probability". FFF mechanistic probability is defined in terms of facts about the causal structure of devices and certain sets of frequencies in the actual world. Though defined partly in terms of frequencies, FFF mechanistic probability avoids many drawbacks of well-known frequency theories and helps causally explain stable frequencies, which will usually be close to the values of mechanistic probabilities. I also argue that it's (...) a virtue rather than a failing of FFF mechanistic probability that it does not define single-case chances, and compare some aspects of my interpretation to a recent interpretation proposed by Strevens. (shrink)
This paper develops an information-sensitive theory of the semantics and probability of conditionals and statements involving epistemic modals. The theory validates a number of principles linking probability and modality, including the principle that the probability of a conditional If A, then C equals the probability of C, updated with A. The theory avoids so-called triviality results, which are standardly taken to show that principles of this sort cannot be validated. To achieve this, we deny that rational (...) agents update their credences via conditionalization. We offer a new rule of update, Hyperconditionalization, which agrees with Conditionalization whenever nonmodal statements are at stake but differs for modal and conditional sentences. (shrink)
Richard Jeffrey is beyond dispute one of the most distinguished and influential philosophers working in the field of decision theory and the theory of knowledge. His work is distinctive in showing the interplay of epistemological concerns with probability and utility theory. Not only has he made use of standard probabilistic and decision theoretic tools to clarify concepts of evidential support and informed choice, he has also proposed significant modifications of the standard Bayesian position in order that it provide a (...) better fit with actual human experience. Probability logic is viewed not as a source of judgment but as a framework for explaining the implications of probabilistic judgments and their mutual compatability. This collection of essays spans a period of some 35 years and includes what have become some of the classic works in the literature. There is also one completely new piece, while in many instances Jeffrey includes afterthoughts on the older essays. (shrink)
APA PsycNET abstract: This is the first volume of a two-volume work on Probability and Induction. Because the writer holds that probability logic is identical with inductive logic, this work is devoted to philosophical problems concerning the nature of probability and inductive reasoning. The author rejects a statistical frequency basis for probability in favor of a logical relation between two statements or propositions. Probability "is the degree of confirmation of a hypothesis (or conclusion) on the (...) basis of some given evidence (or premises)." Furthermore, all principles and theorems of inductive logic are analytic, and the entire system is to be constructed by means of symbolic logic and semantic methods. This means that the author confines himself to the formalistic procedures of word and symbol systems. The resulting sentence or language structures are presumed to separate off logic from all subjectivist or psychological elements. Despite the abstractionism, the claim is made that if an inductive probability system of logic can be constructed it will have its practical application in mathematical statistics, and in various sciences. 16-page bibliography. (PsycINFO Database Record (c) 2016 APA, all rights reserved). (shrink)
This book offers a concise survey of basic probability theory from a thoroughly subjective point of view whereby probability is a mode of judgment. Written by one of the greatest figures in the field of probability theory, the book is both a summation and synthesis of a lifetime of wrestling with these problems and issues. After an introduction to basic probability theory, there are chapters on scientific hypothesis-testing, on changing your mind in response to generally uncertain (...) observations, on expectations of the values of random variables, on de Finetti's dissolution of the so-called problem of induction, and on decision theory. (shrink)
The Sweep of Probability broadly surveys this burgeoning field of philosophical inquiry. The book is unique because it engages the reader in contemporary debates about a variety of issues in probability theory without requiring a background in probability and mathematics. It also illustrates how the concerns of probability relate not only to philosophical inquiry but to aspects of everyday life. The primary aim of this book, claims George N.Schlesinger in the introduction, is to illustrate, by discussing (...) a wide variety of topics, that elementary probability belongs to one of those rare intellectual ventures where the returns are disproportionately high to the initial investment of effort. (shrink)
This is a study in the meaning of natural language probability operators, sentential operators such as probably and likely. We ask what sort of formal structure is required to model the logic and semantics of these operators. Along the way we investigate their deep connections to indicative conditionals and epistemic modals, probe their scalar structure, observe their sensitivity to contex- tually salient contrasts, and explore some of their scopal idiosyncrasies.
In this influential study of central issues in the philosophy of science, Paul Horwich elaborates on an important conception of probability, diagnosing the failure of previous attempts to resolve these issues as stemming from a too-rigid conception of belief. Adopting a Bayesian strategy, he argues for a probabilistic approach, yielding a more complete understanding of the characteristics of scientific reasoning and methodology. Presented in a fresh twenty-first-century series livery, and including a specially commissioned preface written by Colin Howson, illuminating (...) its enduring importance and relevance to philosophical enquiry, this engaging work has been revived for a new generation of readers. (shrink)
This paper engages with a specific problem concerning the relationship between descriptive and normative claims. Namely, if we understand that descriptive claims frequently contain normative assertions, and vice versa, how then do we interpret the traditionally rigid distinction that is made between the two, as ’Hume’s law’ or Moore’s ’naturalistic fallacy’ argument offered. In particular, Kripke’s interpretation of Wittgenstein’s ’rule-following paradox’ is specially focused upon in order to re-consider the rigid distinction. As such, the paper argues that if descriptive and (...) normative claims are not mutually exclusive, then we need a new framework with which to understand this relationship. In this regard, the paper borrows from concerns with vagueness, particularly using a degree-theoretic approach in terms of subjective probability, in an attempt to graphically figure out these differences. Consequently, the paper tentatively proposes the hyperbola model in which degrees of normativity and degrees of descriptivity could be expressed and measured. It is hoped, as a result, that this tentative proposal will contribute to deepening the debate on vagueness in general. (shrink)
In this book Pollock deals with the subject of probabilistic reasoning, making general philosophical sense of objective probabilities and exploring their ...
With this treatise, an insightful exploration of the probabilistic connection between philosophy and the history of science, the famous economist breathed new life into studies of both disciplines. Originally published in 1921, this important mathematical work represented a significant contribution to the theory regarding the logical probability of propositions. Keynes effectively dismantled the classical theory of probability, launching what has since been termed the “logical-relationist” theory. In so doing, he explored the logical relationships between classifying a proposition as (...) “highly probable” and as a “justifiable induction.” Unabridged republication of the classic 1921 edition. (shrink)
It is often objected that the Everett interpretation of QM cannot make sense of quantum probabilities, in one or both of two ways: either it can’t make sense of probability at all, or it can’t explain why probability should be governed by the Born rule. David Deutsch has attempted to meet these objections. He argues not only that rational decision under uncertainty makes sense in the Everett interpretation, but also that under reasonable assumptions, the credences of a rational (...) agent in an Everett world should be constrained by the Born rule. David Wallace has developed and defended Deutsch’s proposal, and greatly clarified its conceptual basis. In particular, he has stressed its reliance on the distinguishing symmetry of the Everett view, viz., that all possible outcomes of a quantum measurement are treated as equally real. The argument thus tries to make a virtue of what has usually been seen as the main obstacle to making sense of probability in the Everett world. In this note I outline some objections to the Deutsch-Wallace argument, and to related proposals by Hilary Greaves about the epistemology of Everettian QM. (In the latter case, my arguments include an appeal to an Everettian analogue of the Sleeping Beauty problem.) The common thread to these objections is that the symmetry in question remains a very significant obstacle to making sense of probability in the Everett interpretation. (shrink)
According to what is now commonly referred to as “the Equation” in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of Lewis and others have conclusively shown the Equation to be tenable only at the expense of the view that indicative conditionals express propositions. This study challenges the correctness of that (...) assessment by presenting data that cast doubt on an assumption underlying all triviality arguments. (shrink)
It is well known that classical, aka ‘sharp’, Bayesian decision theory, which models belief states as single probability functions, faces a number of serious difficulties with respect to its handling of agnosticism. These difficulties have led to the increasing popularity of so-called ‘imprecise’ models of decision-making, which represent belief states as sets of probability functions. In a recent paper, however, Adam Elga has argued in favour of a putative normative principle of sequential choice that he claims to be (...) borne out by the sharp model but not by any promising incarnation of its imprecise counterpart. After first pointing out that Elga has fallen short of establishing that his principle is indeed uniquely borne out by the sharp model, I cast aspersions on its plausibility. I show that a slight weakening of the principle is satisfied by at least one, but interestingly not all, varieties of the imprecise model and point out that Elga has failed to motivate his stronger commitment. (shrink)
This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...) Boltzmann that probabilities would be needed, namely, that the second law of thermodynamics, which in its original formulation says that certain processes are impossible, must, on the kinetic theory, be replaced by a weaker formulation according to which what the original version deems impossible is merely improbable. Second is that we ought not take the standard measures invoked in equilibrium statistical mechanics as giving, in any sense, the correct probabilities about microstates of the system. We can settle for a much weaker claim: that the probabilities for outcomes of experiments yielded by the standard distributions are effectively the same as those yielded by any distribution that we should take as a representing probabilities over microstates. Lastly, (and most controversially): in asking about the status of probabilities in statistical mechanics, the familiar dichotomy between epistemic probabilities (credences, or degrees of belief) and ontic (physical) probabilities is insufficient; the concept of probability that is best suited to the needs of statistical mechanics is one that combines epistemic and physical considerations. (shrink)
The Ramseyan thesis that the probability of an indicative conditional is equal to the corresponding conditional probability of its consequent given its antecedent is both widely confirmed and subject to attested counterexamples (e.g., McGee 2000, Kaufmann 2004). This raises several puzzling questions. For instance, why are there interpretations of conditionals that violate this Ramseyan thesis in certain contexts, and why are they otherwise very rare? In this paper, I raise some challenges to Stefan Kaufmann's account of why the (...) Ramseyan thesis sometimes fails, and motivate my own theory. On my theory, the proposition expressed by an indicative conditional is partially determined by a background partition, and hence its probability depends on the choice of such a partition. I hold that this background partition is contextually determined, and in certain conditions is set by a salient question under discussion in the context. I show how the resulting theory offers compelling answers to the puzzling questions raised by failures of the Ramseyan thesis. (shrink)
Many have argued that a rational agent's attitude towards a proposition may be better represented by a probability range than by a single number. I show that in such cases an agent will have unstable betting behaviour, and so will behave in an unpredictable way. I use this point to argue against a range of responses to the ‘two bets’ argument for sharp probabilities.
David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose (...) some novel principles connecting the physics of EQM with the metaphysics of modality, and argue that in the resulting framework the incoherence problem does not arise. These principles also help to justify one of the most controversial premises of Wallace’s argument, ‘branching indifference’. Absent any a priori reason to align the metaphysics with the physics in some other way, the proposed principles can be adopted on grounds of theoretical utility. The upshot is that Everettians can, after all, make clear sense of objective probability. 1 Introduction2 Setup3 Individualism versus Collectivism4 The Ingredients of Indexicalism5 Indexicalism and Incoherence5.1 The trivialization problem5.2 The uncertainty problem6 Indexicalism and Branching Indifference6.1 Introducing branching indifference6.2 The pragmatic defence of branching indifference6.3 The non-existence defence of branching indifference6.4 The indexicalist defence of branching indifference7 Conclusion. (shrink)
I define a concept of causal probability and apply it to questions about the role of probability in evolutionary processes. Causal probability is defined in terms of manipulation of patterns in empirical outcomes by manipulating properties that realize objective probabilities. The concept of causal probability allows us see how probabilities characterized by different interpretations of probability can share a similar causal character, and does so in such way as to allow new inferences about relationships between (...) probabilities realized in different chance setups. I clarify relations between probabilities and properties defined in terms of them, and argue that certain widespread uses of computer simulations in evolutionary biology show that many probabilities relevant to evolutionary outcomes are causal probabilities. This supports the claim that higher-level properties such as biological fitness and processes such as natural selection are causal properties and processes, contrary to what some authors have argued. (shrink)
This chapter explores the topic of imprecise probabilities as it relates to model validation. IP is a family of formal methods that aim to provide a better representationRepresentation of severe uncertainty than is possible with standard probabilistic methods. Among the methods discussed here are using sets of probabilities to represent uncertainty, and using functions that do not satisfy the additvity property. We discuss the basics of IP, some examples of IP in computer simulation contexts, possible interpretations of the IP framework (...) and some conceptual problems for the approach. We conclude with a discussion of IP in the context of model validation. (shrink)
Some have argued that chance and determinism are compatible in order to account for the objectivity of probabilities in theories that are compatible with determinism, like Classical Statistical Mechanics (CSM) and Evolutionary Theory (ET). Contrarily, some have argued that chance and determinism are incompatible, and so such probabilities are subjective. In this paper, I argue that both of these positions are unsatisfactory. I argue that the probabilities of theories like CSM and ET are not chances, but also that they are (...) not subjective probabilities either. Rather, they are a third type of probability, which I call counterfactual probability. The main distinguishing feature of counterfactual-probability is the role it plays in conveying important counterfactual information in explanations. This distinguishes counterfactual probability from chance as a second concept of objective probability. (shrink)
Many have claimed that unspecific evidence sometimes demands unsharp, indeterminate, imprecise, vague, or interval-valued probabilities. Against this, a variant of the diachronic Dutch Book argument shows that perfectly rational agents always have perfectly sharp probabilities.
This paper is about teaching probability to students of philosophy who don’t aim to do primarily formal work in their research. These students are unlikely to seek out classes about probability or formal epistemology for various reasons, for example because they don’t realize that this knowledge would be useful for them or because they are intimidated by the material. However, most areas of philosophy now contain debates that incorporate probability, and basic knowledge of it is essential even (...) for philosophers whose work isn’t primarily formal. In this paper, I explain how to teach probability to students who are not already enthusiastic about formal philosophy, taking into account the common phenomena of math anxiety and the lack of reading skills for formal texts. I address course design, lesson design, and assignment design. Most of my recommendations also apply to teaching formal methods other than probability theory. (shrink)
Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ (...) The final axiom of NAP _3.4_ Infinite sums _3.5_ Definition of NAP functions via infinite sums _3.6_ Relation to numerosity theory _4_ Objections and Replies _4.1_ Cantor and the Archimedean property _4.2_ Ticket missing from an infinite lottery _4.3_ Williamson’s infinite sequence of coin tosses _4.4_ Point sets on a circle _4.5_ Easwaran and Pruss _5_ Dividends _5.1_ Measure and utility _5.2_ Regularity and uniformity _5.3_ Credence and chance _5.4_ Conditional probability _6_ General Considerations _6.1_ Non-uniqueness _6.2_ Invariance Appendix. (shrink)
Different inferences in probabilistic logics of conditionals 'preserve' the probabilities of their premisses to different degrees. Some preserve certainty, some high probability, some positive probability, and some minimum probability. In the first case conclusions must have probability I when premisses have probability 1, though they might have probability 0 when their premisses have any lower probability. In the second case, roughly speaking, if premisses are highly probable though not certain then conclusions must also (...) be highly probable. In the third case conclusions must have positive probability when premisses do, and in the last case conclusions must be at least as probable as their least probable premisses. Precise definitions and well known examples are given for each of these properties, characteristic principles are shown to be valid and complete for deriving conclusions of each of these kinds, and simple trivalent truthtable 'tests' are described for determining which properties are possessed by any given inference. Brief comments are made on the application of these results to certain modal inferences such as "Jones may own a car, and if he does he will have a driver's license. Therefore, he may have a driver's license.". (shrink)
Subjective probability plays an increasingly important role in many fields concerned with human cognition and behavior. Yet there have been significant criticisms of the idea that probabilities could actually be represented in the mind. This paper presents and elaborates a view of subjective probability as a kind of sampling propensity associated with internally represented generative models. The resulting view answers to some of the most well known criticisms of subjective probability, and is also supported by empirical work (...) in neuroscience and behavioral psychology. The repercussions of the view for how we conceive of many ordinary instances of subjective probability, and how it relates to more traditional conceptions of subjective probability, are discussed in some detail. (shrink)
We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...) of the theory as one about populations exclusively. (shrink)
We explore ways in which purely qualitative belief change in the AGM tradition throws light on options in the treatment of conditional probability. First, by helping see why it can be useful to go beyond the ratio rule defining conditional from one-place probability. Second, by clarifying what is at stake in different ways of doing that. Third, by suggesting novel forms of conditional probability corresponding to familiar variants of qualitative belief change, and conversely. Likewise, we explain how (...) recent work on the qualitative part of probabilistic inference leads to a very broad class of 'proto-probability' functions. (shrink)
_Probability: A Philosophical Introduction_ introduces and explains the principal concepts and applications of probability. It is intended for philosophers and others who want to understand probability as we all apply it in our working and everyday lives. The book is not a course in mathematical probability, of which it uses only the simplest results, and avoids all needless technicality. The role of probability in modern theories of knowledge, inference, induction, causation, laws of nature, action and decision-making (...) makes an understanding of it especially important to philosophers and students of philosophy, to whom this book will be invaluable both as a textbook and a work of reference. In this book D. H. Mellor discusses the three basic kinds of probability – physical, epistemic, and subjective – and introduces and assesses the main theories and interpretations of them. The topics and concepts covered include: * chance * frequency * possibility * propensity * credence * confirmation * Bayesianism. _Probability: A Philosophical Introduction_ is essential reading for all philosophy students and others who encounter or need to apply ideas of probability. (shrink)
This article outlines a theory of naive probability. According to the theory, individuals who are unfamiliar with the probability calculus can infer the probabilities of events in an extensional way: They construct mental models of what is true in the various possibilities. Each model represents an equiprobable alternative unless individuals have beliefs to the contrary, in which case some models will have higher probabilities than others. The probability of an event depends on the proportion of models in (...) which it occurs. The theory predicts several phenomena of reasoning about absolute probabilities, including typical biases. It correctly predicts certain cognitive illusions in inferences about relative probabilities. It accommodates reasoning based on numerical premises, and it explains how naive reasoners can infer posterior probabilities without relying on Bayes's theorem. Finally, it dispels some common misconceptions of probabilistic reasoning. (shrink)
When a doctor tells you there’s a one percent chance that an operation will result in your death, or a scientist claims that his theory is probably true, what exactly does that mean? Understanding probability is clearly very important, if we are to make good theoretical and practical choices. In this engaging and highly accessible introduction to the philosophy of probability, Darrell Rowbottom takes the reader on a journey through all the major interpretations of probability, with reference (...) to real–world situations. In lucid prose, he explores the many fallacies of probabilistic reasoning, such as the ‘gambler’s fallacy’ and the ‘inverse fallacy’, and shows how we can avoid falling into these traps by using the interpretations presented. He also illustrates the relevance of the interpretation of probability across disciplinary boundaries, by examining which interpretations of probability are appropriate in diverse areas such as quantum mechanics, game theory, and genetics. Using entertaining dialogues to draw out the key issues at stake, this unique book will appeal to students and scholars across philosophy, the social sciences, and the natural sciences. (shrink)
John Maynard Keynes’s A Treatise on Probability is the seminal text for the logical interpretation of probability. According to his analysis, probabilities are evidential relations between a hypothesis and some evidence, just like the relations of deductive logic. While some philosophers had suggested similar ideas prior to Keynes, it was not until his Treatise that the logical interpretation of probability was advocated in a clear, systematic and rigorous way. I trace Keynes’s influence in the philosophy of (...) class='Hi'>probability through a heterogeneous sample of thinkers who adopted his interpretation. This sample consists of Frederick C. Benenson, Roy Harrod, Donald C. Williams, Henry E. Kyburg and David Stove. The ideas of Keynes prove to be adaptable to their diverse theories of probability. My discussion indicates both the robustness of Keynes’s probability theory and the importance of its influence on the philosophers whom I describe. I also discuss the Problem of the Priors. I argue that none of those I discuss have obviously improved on Keynes’s theory with respect to this issue. (shrink)
Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so (...) on for other kinds of probability, such as evidential probability. The formal analogue of this picture is the regularity constraint: a probability distribution over sets of possibilities is regular just in case it assigns probability 0 only to the null set, and therefore probability 1 only to the set of all possibilities. (shrink)
This book: * assumes no mathematical background and keeps the technicalities to a minimum * explains the most important applications of probability theory to ...
It is possible that a fair coin tossed infinitely many times will always land heads. So the probability of such a sequence of outcomes should, intuitively, be positive, albeit miniscule: 0 probability ought to be reserved for impossible events. And, furthermore, since the tosses are independent and the probability of heads (and tails) on a single toss is half, all sequences are equiprobable. But Williamson has adduced an argument that purports to show that our intuitions notwithstanding, the (...)probability of an infinite sequence is 0. In this paper, I rebut his argument.No Abstract. (shrink)
Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so (...) on for other kinds of probability, such as evidential probability. The formal analogue of this picture is the regularity constraint: a probability distribution over sets of possibilities is regular just in case it assigns probability 0 only to the null set, and therefore probability 1 only to the set of all possibilities. (shrink)