This introduction to the basic ideas of structural prooftheory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply (...) them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included. (shrink)
Structural prooftheory is a branch of logic that studies the general structure and properties of logical and mathematical proofs. This book is both a concise introduction to the central results and methods of structural prooftheory, and a work of research that will be of interest to specialists. The book is designed to be used by students of philosophy, mathematics and computer science. The book contains a wealth of results on proof-theoretical systems, including extensions (...) of such systems from logic to mathematics, and on the connection between the two main forms of structural prooftheory - natural deduction and sequent calculus. The authors emphasize the computational content of logical results. A special feature of the volume is a computerized system for developing proofs interactively, downloadable from the web and regularly updated. (shrink)
The prooftheory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Prooftheory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof (...)theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
Proof-theoretical notions and techniques, developed on the basis of sentential/symbolic representations of formal proofs, are applied to Euler diagrams. A translation of an Euler diagrammatic system into a natural deduction system is given, and the soundness and faithfulness of the translation are proved. Some consequences of the translation are discussed in view of the notion of free ride, which is mainly discussed in the literature of cognitive science as an account of inferential efficacy of diagrams. The translation enables us (...) to formalize and analyze free ride in terms of prooftheory. The notion of normal form of Euler diagrammatic proofs is investigated, and a normalization theorem is proved. Some consequences of the theorem are further discussed: in particular, an analysis of the structure of normal diagrammatic proofs; a diagrammatic counterpart of the usual subformula property; and a characterization of diagrammatic proofs compared with natural deduction proofs. (shrink)
Paraconsistent Weak Kleene Logic is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.
The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
ProofTheory of Modal Logic is devoted to a thorough study of proof systems for modal logics, that is, logics of necessity, possibility, knowledge, belief, time, computations etc. It contains many new technical results and presentations of novel proof procedures. The volume is of immense importance for the interdisciplinary fields of logic, knowledge representation, and automated deduction.
This volume contains articles covering a broad spectrum of prooftheory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of prooftheory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of prooftheory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that (...) the two introductory articles come first; these are then followed by articles from core classical areas of prooftheory; the handbook concludes with articles that deal with topics closely related to computer science. (shrink)
Admissible rules of a logic are those rules under which the set of theorems of the logic is closed. In this paper, a Gentzen-style framework is introduced for analytic proof systems that derive admissible rules of non-classical logics. While Gentzen systems for derivability treat sequents as basic objects, for admissibility, the basic objects are sequent rules. Proof systems are defined here for admissible rules of classes of modal logics, including K4, S4, and GL, and also Intuitionistic Logic IPC. (...) With minor restrictions, proof search in these systems terminates, giving decision procedures for admissibility in the logics. (shrink)
The paper contains proof-theoretic investigation on extensions of Kripke-Platek set theory, KP, which accommodate first-order reflection. Ordinal analyses for such theories are obtained by devising cut elimination procedures for infinitary calculi of ramified set theory with Пn reflection rules. This leads to consistency proofs for the theories KP+Пn reflection using a small amount of arithmetic and the well-foundedness of a certain ordinal system with respect to primitive decending sequences. Regarding future work, we intend to avail ourselves of (...) these new cut elimination techniques to attain an ordinal analysis of П12 comprehension by approaching П12 comprehension through transfinite levels of reflection. (shrink)
The article deals with infinitary modal logic. We first discuss the difficulties related to the development of a satisfactory prooftheory and then we show how to overcome these problems by introducing a labelled sequent calculus which is sound and complete with respect to Kripke semantics. We establish the structural properties of the system, namely admissibility of the structural rules and of the cut rule. Finally, we show how to embed common knowledge in the infinitary calculus and we (...) discuss first-order extensions of infinitary modal logic. (shrink)
This paper provides a proof-theoretic study of quantified non-normal modal logics. It introduces labelled sequent calculi based on neighbourhood semantics for the first-order extension, with both varying and constant domains, of monotone NNML, and studies the role of the Barcan formulas in these calculi. It will be shown that the calculi introduced have good structural properties: invertibility of the rules, height-preserving admissibility of weakening and contraction and syntactic cut elimination. It will also be shown that each of the calculi (...) introduced is sound and complete with respect to the appropriate class of neighbourhood frames. In particular, the completeness proof constructs a formal derivation for derivable sequents and a countermodel for non-derivable ones, and gives a semantic proof of the admissibility of cut. (shrink)
We present some proof-theoretic results for the normal modal logic whose characteristic axiom is \. We present a sequent system for this logic and a hypersequent system for its first-order form and show that these are equivalent to Hilbert-style axiomatizations. We show that the question of validity for these logics reduces to that of classical tautologyhood and first-order logical truth, respectively. We close by proving equivalences with a Fitch-style proof system for revision theory.
This paper is a companion to work of Feferman, Jäger, Glaß, and Strahm on the prooftheory of the type two functionals μ and E1 in the context of Feferman-style applicative theories. In contrast to the previous work, we analyze these two functionals in the context of Schlüter's weakened applicative basis PRON which allows for an interpretation in the primitive recursive indices. The proof-theoretic strength of PRON augmented by μ and E1 is measured in terms of the (...) two subsystems of second order arithmetic, Π10-CA and Π11-CA, respectively. (shrink)
Paraconsistent quantum logic, a hybrid of minimal quantum logic and paraconsistent four-valued logic, is introduced as Gentzen-type sequent calculi, and the cut-elimination theorems for these calculi are proved. This logic is shown to be decidable through the use of these calculi. A first-order extension of this logic is also shown to be decidable. The relationship between minimal quantum logic and paraconsistent four-valued logic is clarified, and a survey of existing Gentzen-type sequent calculi for these logics and their close relatives is (...) addressed. (shrink)
Proof-theoretic methods are developed for subsystems of Johansson’s logic obtained by extending the positive fragment of intuitionistic logic with weak negations. These methods are exploited to establish properties of the logical systems. In particular, cut-free complete sequent calculi are introduced and used to provide a proof of the fact that the systems satisfy the Craig interpolation property. Alternative versions of the calculi are later obtained by means of an appropriate loop-checking history mechanism. Termination of the new calculi is (...) proved, and used to conclude that the considered logical systems are PSPACE-complete. (shrink)
This paper deals with a prooftheory for a theory T22 of recursively Mahlo ordinals in the form of Π2-reflecting on Π2-reflecting ordinals using a subsystem Od of the system O of ordinal diagrams in Arai 353). This paper is the first published one in which a proof-theoretic analysis à la Gentzen–Takeuti of recursively large ordinals is expounded.
The foundations of mathematics are divided into prooftheory and set theory. Prooftheory tries to justify the world of infinite mind from the standpoint of finite mind. Set theory tries to know more and more of the world of the infinite mind. The development of two subjects are discussed including a new proof of the accessibility of ordinal diagrams. Finally the world of large cardinals appears when we go slightly beyond girard's categorical (...) approach to prooftheory. (shrink)
This paper deals with a prooftheory for a theory T3 of Π3-reflecting ordinals using the system O of ordinal diagrams in Arai 1375). This is a sequel to the previous one 1) in which a theory for recursively Mahlo ordinals is analyzed proof-theoretically.
In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.
Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by (...) researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations. (shrink)
Categorical prooftheory is an approach to understanding the structure of proofs. We illustrate the idea first by analyzing G0̈del's Dialectica interpretation and the Diller-Nahm variant in categorical terms. Then we consider the problematic question of the structure of classical proofs. We show how double negation translations apply in the case of the Dialectica interpretations. Finally we formulate a proposal as to how to give a more faithful analysis of proofs in the sequent calculus.
This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural prooftheory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary (...) discussion. Much of Stoic logic appears surprisingly modern: a recursively formulated syntax with some truth-functional propositional operators; analogues to cut rules, axiom schemata and Gentzen’s negation-introduction rules; an implicit variable-sharing principle and deliberate rejection of Thinning and avoidance of paradoxes of implication. These latter features mark the system out as a relevance logic, where the absence of duals for its left and right introduction rules puts it in the vicinity of McCall’s connexive logic. Methodologically, the choice of meticulously formulated meta-logical rules in lieu of axiom and inference schemata absorbs some structural rules and results in an economical, precise and elegant system that values decidability over completeness. (shrink)
The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. The application of this undervalued formalism has been hampered by the absence of well-behaved proof systems on the one hand, and accessible presentations of its theory on the other. One significant early result for the original axiomatic proof system for the epsilon-calculus is the first epsilon theorem, for which a proof is sketched. The system itself is discussed, also relative to possible semantic (...) interpretations. The problems facing the development of proof-theoretically well-behaved systems are outlined. (shrink)
This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model. This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and (...) the relationships between proof systems for different modal logics are often unclear. In the present book we demonstrate that hybrid-logical proof-theory remedies these deficiencies by giving a spectrum of well-behaved proof systems for a spectrum of different hybrid logics. (shrink)
This paper presents a sound and complete five-sided sequent calculus for first-order weak Kleene valuations which permits not only elegant representations of four logics definable on first-order weak Kleene valuations, but also admissibility of five cut rules by proof analysis.
This work is derived from the SERC "Logic for IT" Summer School Conference on ProofTheory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles which form an invaluable introduction to prooftheory aimed at both mathematicians and computer scientists.
This chapter provides broad coverage of the notion of logical consequence, exploring its modal, semantic, and epistemic aspects. It develops the contrast between proof-theoretic notion of consequence, in terms of deduction, and a model-theoretic approach, in terms of truth-conditions. The main purpose is to relate the formal, technical work in logic to the philosophical concepts that underlie reasoning.
We present a survey of prooftheory in the USSR beginning with the paper by Kolmogorov [1925] and ending (mostly) in 1969; the last two sections deal with work done by A. A. Markov and N. A. Shanin in the early seventies, providing a kind of effective interpretation of negative arithmetic formulas. The material is arranged in chronological order and subdivided according to topics of investigation. The exposition is more detailed when the work is little known in the (...) West or the original presentation can be improved using notions or results which appeared later. This includes such topics as Novikov's cut-elimination method (regular formulas) and Maslov's inverse method for the predicate logic. (shrink)
This paper presents a sequent calculus and a dual domain semantics for a theory of definite descriptions in which these expressions are formalised in the context of complete sentences by a binary quantifier I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This approach has the advantage of incorporating scope distinctions directly into the notation. Cut elimination is proved for a system of classical positive free logic with I and it is shown to (...) be sound and complete for the semantics. The system has a number of novel features and is briefly compared to the usual approach of formalising ‘the F ’ by a term forming operator. It does not coincide with Hintikka’s and Lambert’s preferred theories, but the divergence is well-motivated and attractive. (shrink)
A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple game-theoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cut-free labelled Gentzen-style proof system is then introduced where knowledge and action, as well as their combinations, are formulated as rules of inference, rather than axioms. This provides a logical framework for reasoning about games in a modular and systematic way, and to (...) give a step-by-step reconstruction of agents omniscience. In particular, its semantic assumptions are made explicit and a possible solution can be found in weakening the properties of the knowledge operator. (shrink)
We show that the existence of a weakly compact cardinal over the Zermelo–Fraenkel's set theory ZF is proof-theoretically reducible to iterations of Mostowski collapsings and Mahlo operations.
I present an account of truth values for classical logic, intuitionistic logic, and the modal logic S5, in which truth values are not a fundamental category from which the logic is defined, but rather, an idealisation of more fundamental logical features in the prooftheory for each system. The result is not a new set of semantic structures, but a new understanding of how the existing semantic structures may be understood in terms of a more fundamental notion of (...) logical consequence. (shrink)
The lambdaPi-calculus, a theory of first-order dependent function types in Curry-Howard-de Bruijn correspondence with a fragment of minimal first-order logic, is defined as a system of (linearized) natural deduction. In this paper, we present a Gentzen-style sequent calculus for the lambdaPi-calculus and prove the cut-elimination theorem. The cut-elimination result builds upon the existence of normal forms for the natural deduction system and can be considered to be analogous to a proof provided by Prawitz for first-order logic. The type-theoretic (...) setting considered here elegantly illustrates the distinction between the processes of normalization in a natural deduction system and cut-elimination in a Gentzen-style sequent calculus. (shrink)