Results for 'Qubit'

122 found
Order:
  1.  6
    Two-Qubit Operators in No-Splitting Theorems.B. Shravan Kumar & S. Balakrishnan - 2022 - Foundations of Physics 52 (3):1-14.
    Applications of quantum mechanics in the computational and information processing tasks is a recent research interest among the researchers. Certain operations which are impossible to achieve in the description of quantum mechanics are known as no-go theorems. One such theorem is no-splitting theorem of quantum states. The no-splitting theorem states that the information in an unknown quantum bit is an inseparable entity and cannot be split into two complementary qubits. In this work, we try to find out the class of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  50
    Information Theoretic Representations of Qubit Channels.Tanner Crowder & Keye Martin - 2012 - Foundations of Physics 42 (7):976-983.
    A set of qubit channels has a classical representation when it is isomorphic to the convex closure of a group of classical channels. From Crowder and Martin (Proceedings of Quantum Physics and Logic, Electronic Notes in Theoretical Computer Science, 2009), we know that up to isomorphism there are five such sets, each corresponding to either a subgroup of the alternating group on four letters, or a subgroup of the symmetric group on three letters. In this paper, we show that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  3. It from qubit.David Deutsch - unknown
    Of John Wheeler’s ‘Really Big Questions’, the one on which the most progress has been made is It From Bit? – does information play a significant role at the foundations of physics? It is perhaps less ambitious than some of the other Questions, such as How Come Existence?, because it does not necessarily require a metaphysical answer. And unlike, say, Why The Quantum?, it does not require the discovery of new laws of nature: there was room for hope that it (...)
     
    Export citation  
     
    Bookmark   8 citations  
  4. Quantum read-out and fast initialization of nuclear spin qubits with electric currents.Noah Stemeroff - 2011 - Physical Review Letters 19 (107).
    Nuclear spin qubits have the longest coherence times in the solid state, but their quantum readout and initialization is a great challenge. We present a theory for the interaction of an electric current with the nuclear spins of donor impurities in semiconductors. The theory yields a sensitivity criterion for quantum detection of nuclear spin states using electrically detected magnetic resonance, as well as an all-electrical method for fast nuclear spin qubit initialization.
     
    Export citation  
     
    Bookmark  
  5.  82
    The Hyperbolic Geometric Structure of the Density Matrix for Mixed State Qubits.Abraham A. Ungar - 2002 - Foundations of Physics 32 (11):1671-1699.
    Density matrices for mixed state qubits, parametrized by the Bloch vector in the open unit ball of the Euclidean 3-space, are well known in quantum computation theory. We bring the seemingly structureless set of all these density matrices under the umbrella of gyrovector spaces, where the Bloch vector is treated as a hyperbolic vector, called a gyrovector. As such, this article catalizes and supports interdisciplinary research spreading from mathematical physics to algebra and geometry. Gyrovector spaces are mathematical objects that form (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  26
    Gleason-Type Theorem for Projective Measurements, Including Qubits: The Born Rule Beyond Quantum Physics.F. De Zela - 2016 - Foundations of Physics 46 (10):1293-1306.
    Born’s quantum probability rule is traditionally included among the quantum postulates as being given by the squared amplitude projection of a measured state over a prepared state, or else as a trace formula for density operators. Both Gleason’s theorem and Busch’s theorem derive the quantum probability rule starting from very general assumptions about probability measures. Remarkably, Gleason’s theorem holds only under the physically unsound restriction that the dimension of the underlying Hilbert space \ must be larger than two. Busch’s theorem (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Decryption and Quantum Computing: Seven Qubits and Counting.John G. Cramer - unknown
    Alternate View Column AV-112 Keywords: quantum mechanics entangled states computer computing 7 qubits prime number factoring Schor algorithm NMR nuclear magnetic resonance fast parallel decryption coherence wave-function collapse many-worlds transactional interpretation Published in the June-2002 issue of Analog Science Fiction & Fact Magazine ; This column was written and submitted 12/19/2001 and is copyrighted ©2001 by John G. Cramer.
    Direct download  
     
    Export citation  
     
    Bookmark  
  8.  4
    Non-symmetric Transition Probability in Generalized Qubit Models.Gerd Niestegge - 2023 - Foundations of Physics 54 (1):1-20.
    The quantum mechanical transition probability is symmetric. A probabilistically motivated and more general quantum logical definition of the transition probability was introduced in two preceding papers without postulating its symmetry, but in all the examples considered there it remains symmetric. Here we present a class of binary models where the transition probability is not symmetric, using the extreme points of the unit interval in an order unit space as quantum logic. We show that their state spaces are strictly convex smooth (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. Joint Probabilities Reproducing Three EPR Experiments On Two Qubits.David Atkinson - unknown
    An eight parameter family of the most general nonnegative quadruple probabilities is constructed for EPR-Bohm-Aharonov experiments when only 3 pairs of analyser settings are used. It is a simultaneous representation of 3 Bohr-incompatible experimental configurations valid for arbitrary quantum states.
     
    Export citation  
     
    Bookmark  
  10. Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external and internal is to be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  23
    Zeno Subspaces for Coupled Superconducting Qubits.Paolo Facchi, Rosario Fazio, Giuseppe Florio, Saverio Pascazio & Tetsuya Yoneda - 2006 - Foundations of Physics 36 (4):500-511.
    Decoherence is one of the most serious drawback in quantum mechanical applications. We discuss the effects of noise in superconducting devices (Josephson junctions) and suggest a decoherence-control strategy based on the quantum Zeno effect.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  18
    Effect of entanglement on geometric phase for multi-qubit states.Mark S. Williamson & Vlatko Vedral - 2009 - In Institute of Physics Krzysztof Stefanski (ed.), Open Systems and Information Dynamics. World Scientific Publishing Company. pp. 16--02.
  13.  6
    Quantum core affect. Color-emotion structure of semantic atom.Ilya A. Surov - 2022 - Frontiers in Psychology 13:838029.
    Psychology suffers from the absence of mathematically-formalized primitives. As a result, conceptual and quantitative studies lack an ontological basis that would situate them in the company of natural sciences. The article addresses this problem by describing a minimal psychic structure, expressed in the algebra of quantum theory. The structure is demarcated into categories of emotion and color, renowned as elementary psychological phenomena. This is achieved by means of quantum-theoretic qubit state space, isomorphic to emotion and color experiences both in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (even smooth) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16. The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case of “unitary” qubits. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Natural Cybernetics of Time, or about the Half of any Whole.Vasil Penchev - 2021 - Information Systems eJournal (Elsevier: SSRN) 4 (28):1-55.
    Norbert Wiener’s idea of “cybernetics” is linked to temporality as in a physical as in a philosophical sense. “Time orders” can be the slogan of that natural cybernetics of time: time orders by itself in its “screen” in virtue of being a well-ordering valid until the present moment and dividing any totality into two parts: the well-ordered of the past and the yet unordered of the future therefore sharing the common boundary of the present between them when the ordering is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21. A Quantum Computer in a 'Chinese Room'.Vasil Penchev - 2020 - Mechanical Engineering eJournal (Elsevier: SSRN) 3 (155):1-8.
    Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  22. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  25. Natural Argument by a Quantum Computer.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (30):1-8.
    Natural argument is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary natural arguments in any data. That ability of natural argument is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  26. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  28. God's Dice.Vasil Penchev - 2015 - In S. Oms, J. Martínez, M. García-Carpintero & J. Díez (eds.), Actas: VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona: Universitat de Barcelona. pp. 297-303.
    Einstein wrote his famous sentence "God does not play dice with the universe" in a letter to Max Born in 1920. All experiments have confirmed that quantum mechanics is neither wrong nor “incomplete”. One can says that God does play dice with the universe. Let quantum mechanics be granted as the rules generalizing all results of playing some imaginary God’s dice. If that is the case, one can ask how God’s dice should look like. God’s dice turns out to be (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance to the axiom (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  31. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  32
    An Introduction to Quantum Computing.Phillip Kaye, Raymond Laflamme & Michele Mosca - 2006 - Oxford, England: Oxford University Press UK.
    This concise, accessible text provides a thorough introduction to quantum computing - an exciting emergent field at the interface of the computer, engineering, mathematical and physical sciences. Aimed at advanced undergraduate and beginning graduate students in these disciplines, the text is technically detailed and is clearly illustrated throughout with diagrams and exercises. Some prior knowledge of linear algebra is assumed, including vector spaces and inner products. However, prior familiarity with topics such as quantum mechanics and computational complexity is not required.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  33.  89
    Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements.Carlton M. Caves, Christopher A. Fuchs, Kiran K. Manne & Joseph M. Renes - 2004 - Foundations of Physics 34 (2):193-209.
    We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures, as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of a qubit, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  34.  73
    The Elusive Source of Quantum Speedup.Vlatko Vedral - 2010 - Foundations of Physics 40 (8):1141-1154.
    We discuss two qualities of quantum systems: various correlations existing between their subsystems and the distinguishability of different quantum states. This is then applied to analysing quantum information processing. While quantum correlations, or entanglement, are clearly of paramount importance for efficient pure state manipulations, mixed states present a much richer arena and reveal a more subtle interplay between correlations and distinguishability. The current work explores a number of issues related with identifying the important ingredients needed for quantum information processing. We (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  35.  26
    Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - forthcoming - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN).
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  39
    Stabilizer Notation for Spekkens' Toy Theory.Matthew F. Pusey - 2012 - Foundations of Physics 42 (5):688-708.
    Spekkens has introduced a toy theory (Spekkens in Phys. Rev. A 75(3):032110, 2007) in order to argue for an epistemic view of quantum states. I describe a notation for the theory (excluding certain joint measurements) which makes its similarities and differences with the quantum mechanics of stabilizer states clear. Given an application of the qubit stabilizer formalism, it is often entirely straightforward to construct an analogous application of the notation to the toy theory. This assists calculations within the toy (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  23
    Natural Code of Subjective Experience.Ilya A. Surov - 2022 - Biosemiotics 15 (1):109-139.
    The paper introduces mathematical encoding for subjective experience and meaning in natural cognition. The code is based on a quantum-theoretic qubit structure supplementing classical bit with circular dimension, functioning as a process-causal template for representation of contexts relative to the basis decision. The qubit state space is demarcated in categories of emotional experience of animals and humans. Features of the resulting spherical map align with major theoreties in cognitive and emotion science, modeling of natural language, and semiotics, suggesting (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38. On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39. Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  40.  29
    Quantum Computation and Logic: How Quantum Computers Have Inspired Logical Investigations.Giuseppe Sergioli, Roberto Leporini, Roberto Giuntini & Maria Dalla Chiara - 2018 - Cham, Switzerland: Springer Verlag.
    This book provides a general survey of the main concepts, questions and results that have been developed in the recent interactions between quantum information, quantum computation and logic. Divided into 10 chapters, the books starts with an introduction of the main concepts of the quantum-theoretic formalism used in quantum information. It then gives a synthetic presentation of the main “mathematical characters” of the quantum computational game: qubits, quregisters, mixtures of quregisters, quantum logical gates. Next, the book investigates the puzzling entanglement-phenomena (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41.  15
    Quantum Cognitive Triad: Semantic Geometry of Context Representation.Ilya A. Surov - 2020 - Foundations of Science 26 (4):947-975.
    The paper describes an algorithm for semantic representation of behavioral contexts relative to a dichotomic decision alternative. The contexts are represented as quantum qubit states in two-dimensional Hilbert space visualized as points on the Bloch sphere. The azimuthal coordinate of this sphere functions as a one-dimensional semantic space in which the contexts are accommodated according to their subjective relevance to the considered uncertainty. The contexts are processed in triples defined by knowledge of a subject about a binary situational factor. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  3
    Quantum entanglement in electron optics: generation, characterization, and applications.Naresh Chandra - 2013 - New York: Springer. Edited by R. Ghosh.
    Introduction -- Quantum information: basic relevant concepts and applications -- Theory -- Part I. Atomic processes -- Coulombic entanglement: one-step single photoionization of atoms -- Coulombic entanglement: one-step double photoinonization of atoms -- Coulombic entanglement: two-step double photoinonization of atoms -- Fine-structure entanglement: bipartite states of flying particlees with rest mass different from zero -- Bipartite states and flying electronic qubits -- Part II. Molecular processes -- One-step double photoionization of molecules -- Two-step double photoionization of molecules -- Part III. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  9
    Physics, mathematics, and all that quantum jazz.Shu Tanaka, Masamitsu Bando & Utkan Güngördü (eds.) - 2014 - New Jersey: World Scientific.
    My life as a quantum physicist / M. Nakahara -- A review on operator quantum error correction - Dedicated to Professor Mikio Nakahara on the occasion of his 60th birthday / C.-K. Li, Y.-T. Poon and N.-S. Sze -- Implementing measurement operators in linear optical and solid-state qubits / Y. Ota, S. Ashhab and F. Nori -- Fast and accurate simulation of quantum computing by multi-precision MPS: Recent development / A. Saitoh -- Entanglement properties of a quantum lattice-gas model on (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  44.  40
    Local Tomography and the Jordan Structure of Quantum Theory.Howard Barnum & Alexander Wilce - 2014 - Foundations of Physics 44 (2):192-212.
    Using a result of H. Hanche-Olsen, we show that (subject to fairly natural constraints on what constitutes a system, and on what constitutes a composite system), orthodox finite-dimensional complex quantum mechanics with superselection rules is the only non-signaling probabilistic theory in which (i) individual systems are Jordan algebras (equivalently, their cones of unnormalized states are homogeneous and self-dual), (ii) composites are locally tomographic (meaning that states are determined by the joint probabilities they assign to measurement outcomes on the component systems) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  18
    Towards a Multi Target Quantum Computational Logic.Giuseppe Sergioli - 2020 - Foundations of Science 25 (1):87-104.
    Unlike the standard Quantum Computational Logic, where the carrier of information is conventionally assumed to be only the last qubit over a sequence of many qubits, here we propose an extended version of the QCL where the number and the position of the target qubits are arbitrary.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Parts and wholes. An inquiry into quantum and classical correlations.M. P. Seevinck - unknown
    ** The primary topic of this dissertation is the study of the relationships between parts and wholes as described by particular physical theories, namely generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. ** A large part of this dissertation is devoted to understanding different aspects of four different kinds of correlations: local, partially-local, no-signaling and quantum mechanical correlations. Novel characteristics of these correlations have been used to study how they are related and how they can be (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  47.  20
    Simple Explanation of the Classical Limit.Alejandro A. Hnilo - 2019 - Foundations of Physics 49 (12):1365-1371.
    The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  23
    Spacetime Path Integrals for Entangled States.Ken Wharton & Narayani Tyagi - 2021 - Foundations of Physics 52 (1):1-23.
    Although the path-integral formalism is known to be equivalent to conventional quantum mechanics, it is not generally obvious how to implement path-based calculations for multi-qubit entangled states. Whether one takes the formal view of entangled states as entities in a high-dimensional Hilbert space, or the intuitive view of these states as a connection between distant spatial configurations, it may not even be obvious that a path-based calculation can be achieved using only paths in ordinary space and time. Previous work (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  50
    Quantum information in neural systems.Danko D. Georgiev - 2021 - Symmetry 13 (5):773.
    Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck-Einstein relation between energy and frequency, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  55
    Ontological Models, Preparation Contextuality and Nonlocality.Manik Banik, Some Sankar Bhattacharya, Sujit K. Choudhary, Amit Mukherjee & Arup Roy - 2014 - Foundations of Physics 44 (11):1230-1244.
    The ontological model framework for an operational theory has generated much interest in recent years. The debate concerning reality of quantum states has been made more precise in this framework. With the introduction of generalized notion of contextuality in this framework, it has been shown that completely mixed state of a qubit is preparation contextual. Interestingly, this new idea of preparation contextuality has been used to demonstrate nonlocality of some \(\psi \) -epistemic models without any use of Bell’s inequality. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 122