Some algebraic structures of the set of all effects are investigated and summarized in the notion of a(weak) orthoalgebra. It is shown that these structures can be embedded in a natural way in lattices, via the so-calledMacNeille completion. These structures serve as a model ofparaconsistent quantum logic, orthologic, andorthomodular quantum logic.
We introduce a generalization of MV algebras motivated by the investigations into the structure of quantum logical gates. After laying down the foundations of the structure theory for such quasi-MV algebras, we show that every quasi-MV algebra is embeddable into the direct product of an MV algebra and a “flat” quasi-MV algebra, and prove a completeness result w.r.t. a standard quasi-MV algebra over the complex numbers.
Paraconsistent quantum logics are weak forms of quantum logic, where the noncontradiction and the excluded-middle laws are violated. These logics find interesting applications in the operational approach to quantum mechanics. In this paper, we present an axiomatization, a Kripke-style, and an algebraic semantical characterization for two forms of paraconsistent quantum logic. Further developments are contained in Giuntini and Greuling's paper in this issue.
This book provides a general survey of the main concepts, questions and results that have been developed in the recent interactions between quantum information, quantum computation and logic. Divided into 10 chapters, the books starts with an introduction of the main concepts of the quantum-theoretic formalism used in quantum information. It then gives a synthetic presentation of the main “mathematical characters” of the quantum computational game: qubits, quregisters, mixtures of quregisters, quantum logical gates. Next, the book investigates the puzzling entanglement-phenomena (...) and logically analyses the Einstein–Podolsky–Rosen paradox and introduces the reader to quantum computational logics, and new forms of quantum logic. The middle chapters investigate the possibility of a quantum computational semantics for a language that can express sentences like “Alice knows that everybody knows that she is pretty”, explore the mathematical concept of quantum Turing machine, and illustrate some characteristic examples that arise in the framework of musical languages. The book concludes with an analysis of recent discussions, and contains a Mathematical Appendix which is a survey of the definitions of all main mathematical concepts used in the book. (shrink)
We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
This paper is concerned with a logical system, called Brouwer-Zadeh logic, arising from the BZ poset of all effects of a Hilbert space. In particular, we prove a representation theorem for Brouwer-Zadeh lattices, and we show that Brouwer-Zadeh logic is not characterized by the MacNeille completions of all BZ posets of effects.
We investigate an expansion of quasi-MV algebras ([10]) by a genuine quantum unary operator. The variety of such quasi-MV algebras has a subquasivariety whose members—called cartesian—can be obtained in an appropriate way out of MV algebras. After showing that cartesian . quasi-MV algebras generate ,we prove a standard completeness theorem for w.r.t. an algebra over the complex numbers.
We investigate some properties of two varieties of algebras arising from quantum computation - quasi-MV algebras and $\sqrt{^{\prime }}$ quasi-MV algebras - first introduced in \cite{Ledda et al. 2006}, \cite{Giuntini et al. 200+} and tightly connected with fuzzy logic. We establish the finite model property and the congruence extension property for both varieties; we characterize the quasi-MV reducts and subreducts of $\sqrt{^{\prime }}$ quasi-MV algebras; we give a representation of semisimple $\sqrt{^{\prime }}$ quasi-MV algebras in terms of algebras of functions; (...) finally, we describe the structure of free algebras with one generator in both varieties. (shrink)
We introduce the notion of quantum MV algebra (QMV algebra) as a generalization of MV algebras and we show that the class of all effects of any Hilbert space gives rise to an example of such a structure. We investigate some properties of QMV algebras and we prove that QMV algebras represent non-idempotent extensions of orthomodular lattices.
In the standard approach to quantum mechanics, closed subspaces of a Hilbert space represent propositions. In the operational approach, closed subspaces are replaced by effects that represent a mathematical counterpart for properties which can be measured in a physical system. Effects are a proper generalization of closed subspaces. Effects determine a Brouwer-Zadeh poset which is not a lattice. However, such a poset can be embedded in a complete Brouwer-Zadeh lattice. From an intuitive point of view, one can say that these (...) structures represent a natural logical abstraction from the structure of propositions of a quantum system. The logic that arises in this way is Brouwer-Zadeh logic. This paper shows that such a logic can be characterized by means of an algebraic and a Kripkean semantics. Finally, a strong completeness theorem for BZL is proved. (shrink)
Fuzzy intuitionistic quantum logics (called also Brouwer-Zadeh logics) represent to non standard version of quantum logic where the connective not is split into two different negation: a fuzzy-like negation that gives rise to a paraconsistent behavior and an intuitionistic-like negation. A completeness theorem for a particular form of Brouwer-Zadeh logic (BZL 3) is proved. A phisical interpretation of these logics can be constructed in the framework of the unsharp approach to quantum theory.
The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while logical connectives are interpreted as special (...) quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly “Hilbert-space dependent”. This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic. (shrink)
Some algebraic structures determined by the class σ(þ) of all effects of a Hilbert space þ and by some subclasses of σ(þ) are investigated, in particular de Morgan-Brouwer-Zadeh posets [it is proved that σ(þ n )(n<∞) has such a structure], Brouwer-Zadeh * posets (a quite trivial example consisting of suitable effects is given), and Brouwer-Zadeh 3 posets which are both de Morgan and *.It is shown that a nontrivial class of effects of a Hilbert space exists which is a BZ (...) 3 poset. An ɛ-preclusivity relation on the set of all vectors of þ is introduced, and it is shown that it satisfies the regularity condition also for ε∃ [1/2, 1]. (shrink)
The debate over the question whether quantum mechanics should be considered as a complete account of microphenomena has a long and deeply involved history, a turning point in which has been certainly the Einstein-Bohr debate, with the ensuing charge of incompleteness raised by the Einstein-Podolsky-Rosen argument. In quantum mechanics, physical systems can be prepared in pure states that nevertheless have in general positive dispersion for most physical quantities; hence in the EPR argument, the attention is focused on the question whether (...) the account of the microphysical phenomena provided by quantum mechanics is to be regarded as an exhaustive description of the physical reality to which those phenomena are supposed to refer, a question to which Einstein himself answered in the negative. However, there is a mathematical side of the completeness issue in quantum mechanics, namely the question whether the kind of states with positive dispersion can be represented as a different, dispersion-free kind of states in a way consistent with the mathematical constraints of the quantum mechanical formalism. From this point of view, the other source of the completeness issue in quantum mechanics is the no hidden variables theorem formulated by John von Neumann in his celebrated book on the mathematical foundations of quantum mechanics, the preface of which already anticipates the program and the conclusion concerning the possibility of ‘neutralizing’ the statistical character of quantum mechanics. (shrink)
This paper will take into account the Lindenbaum property in Orthomodular Quantum Logic (OQL) and Partial Classical Logic (PCL). The Lindenbaum property has an interest both from a logical and a physical point of view since it has to do with the problem of the completeness of quantum theory and with the possibility of extending any semantically non-contradictory set of formulas to a semantically non-contradictory complete set of formulas. The main purpose of this paper is to show that both OQL (...) and PCL cannot satisfy the Lindenbaum property. (shrink)
This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. However, in spite of its great empirical effectiveness it (...) stands today still without a universally accepted physical representation that allows us to understand its relation to the world and reality. The novelty of the book comes from the multiple perspectives put forward by top researchers in quantum mechanics, from Europe as well as North and South America, discussing the meaning and structure of the theory of quanta. The book comprises in a balanced manner physical, philosophical, logical and mathematical approaches to quantum mechanics and quantum information. Going from quantum superpositions and entanglement to dynamics and the problem of identity; from quantum logic, computation and quasi-set theory to the category approach and teleportation; from realism and empiricism to operationalism and instrumentalism; the book considers from different angles some of the most intriguing questions in the field. From Buenos Aires to Brussels and Cagliari, from Florence to Florianópolis, the interaction between different groups is reflected in the many different articles. This book is interesting not only to the specialists but also to the general public attempting to get a grasp on some of the most fundamental questions of present quantum physics. (shrink)
We continue our investigation of paraorthomodular BZ*-lattices PBZ*-lattices, started in Giuntini et al., Mureşan. We shed further light on the structure of the subvariety lattice of the variety PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {PBZL}^{\mathbb {*}}$$\end{document} of PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–lattices; in particular, we provide axiomatic bases for some of its members. Further, we show that some distributive subvarieties of PBZL∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {PBZL}^{\mathbb (...) {*}}$$\end{document} are term-equivalent to well-known varieties of expanded KleeneKleene, C. lattices or of nonclassical modal algebrasNonclassical modal algebras. By so doing, we somehow help the reader to locate PBZ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}–lattices on the atlas of algebraic structures for nonclassical logics. (shrink)
Shi and Aharonov have shown that the Toffoli gate and the Hadamard gate give rise to an approximately universal set of quantum computational gates. The basic algebraic properties of this system have been studied in Dalla Chiara et al. (Foundations of Physics 39(6):559–572, 2009), where we have introduced the notion of Shi-Aharonov quantum computational structure. In this paper we propose an algebraic abstraction from the Hilbert-space quantum computational structures, by introducing the notion of Toffoli-Hadamard algebra. From an intuitive point of (...) view, such abstract algebras represent a natural quantum generalization of both classical and fuzzy-like structures. (shrink)
We prove that Brouwer-Zadeh logic has the finite model property and therefore is decidable. Moreover, we present a bimodal system (BKB) which turns out to be characterized by the class of all Brouwer-Zadeh frames. Finally, we show that BrouwerZadeh logic can be translated into BKB.
The term “law” appears in different contexts with different meanings. We are used to speaking of natural laws, legal laws, moral laws, aesthetic laws, historical laws. Such a linguistic convention has represented a constant phenomenon through the history of civilization. Is there any deep common root among all these different uses and meanings?
In 1920 Łukasiewicz published a two-page article whose title was “On Three-valued Logic”. The paper proposes a semantic characterization for the logic that has been later called Ł3 . In spite of the shortness of the paper, all the important points concerning the semantics of Ł3 are already there and can be naturally generalized to the case of a generic number n of truth-values . The conclusion of the article is quite interesting:The present author is of the opinion that three-valued (...) logic has above all theoretical importance as an endeavour to construct a system of non-aristotelian logic. Whether the new system of logic has any practical importance will be seen only when the logical phenomena, especially those in the deductive sciences, are thoroughly examined, and when the consequences of the indeterministic philosophy, which is the metaphysical substratum of the new logic, can be compared with empirical data. (shrink)