Throughout the twentieth century, the classical logic of Frege and Russell dominated the field of formal logic. But, as Ross Brady argues, a new type of weak relevant logic may prove to be better equipped to present new solutions to persistent paradoxes. _Universal Logic _begins with an overview of classical and relevant logic and discusses the limitations of both in analyzing certain paradoxes. It is the first text to demonstrate how the main set-theoretic and semantic paradoxes can be solved in (...) a systematic way and as such will be of great interest to both scholars and students of logic. (shrink)
One of the most dominant approaches to semantics for relevant (and many paraconsistent) logics is the Routley-Meyer semantics involving a ternary relation on points. To some (many?), this ternary relation has seemed like a technical trick devoid of an intuitively appealing philosophical story that connects it up with conditionality in general. In this paper, we respond to this worry by providing three different philosophical accounts of the ternary relation that correspond to three conceptions of conditionality. We close by briefly discussing (...) a general conception of conditionality that may unify the three given conceptions. (shrink)
The paper reviews a number of approaches for handling restricted quantification in relevant logic, and proposes a novel one. This proceeds by introducing a novel kind of enthymematic conditional.
This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment.
The main aim is to extend the range of logics which solve the set-theoretic paradoxes, over and above what was achieved by earlier work in the area. In doing this, the paper also provides a link between metacomplete logics and those that solve the paradoxes, by finally establishing that all M1-metacomplete logics can be used as a basis for naive set theory. In doing so, we manage to reach logics that are very close in their axiomatization to that of the (...) logic R of relevant implication. A further aim is the use of metavaluations in a new context, expanding the range of application of this novel technique, already used in the context of negation and arithmetic, thus providing an alternative to traditional model theoretic approaches. (shrink)
Free Semantics is based on normalized natural deduction for the weak relevant logic DW and its near neighbours. This is motivated by the fact that in the determination of validity in truth-functional semantics, natural deduction is normally used. Due to normalization, the logic is decidable and hence the semantics can also be used to construct counter-models for invalid formulae. The logic DW is motivated as an entailment logic just weaker than the logic MC of meaning containment. DW is the logic (...) focussed upon, but the results extend to MC. The semantics is called 'free semantics' since it is disjunctively and existentially free in that no disjunctive or existential witnesses are produced, unlike in truth-functional semantics. Such 'witnesses' are only assumed in generality and are not necessarily actual. The paper sets up the free semantics in a truth-functional style and gives a natural deduction interpetation of the meta-logical connectives. We then set out a familiar tableau-style system, but based on natural deduction proof rather than truth-functional semantics. A proof of soundness and completeness is given for a reductio system, which is a transform of the tableau system. The reductio system has positive and negative rules in place of the elimination and introduction rules of Brady's normalized natural deduction system for DW. The elimination-introduction turning points become closures of threads of proof, which are at the points of contradiction for the reductio system. (shrink)
The paper essentially shows that the paraconsistent logicDR satisfies the depth relevance condition. The systemDR is an extension of the systemDK of [7] and the non-triviality of a dialectical set theory based onDR has been shown in [3]. The depth relevance condition is a strengthened relevance condition, taking the form: If DR- AB thenA andB share a variable at the same depth, where the depth of an occurrence of a subformulaB in a formulaA is roughly the number of nested ''s (...) required to reach the occurrence ofB inA. The method of proof is to show that a model structureM consisting of {M 0 , M1, ..., M}, where theM i s are all characterized by Meyer''s 6-valued matrices (c. f, [2]), satisfies the depth relevance condition. Then, it is shown thatM is a model structure for the systemDR. (shrink)
A major question for the relevant logics has been, “Under what conditions is Ackermann's ruleγ from -A ∨B andA to inferB, admissible for one of these logics?” For a large number of logics and theories, the question has led to an affirmative answer to theγ problem itself, so that such an answer has almost come to be expected for relevant logics worth taking seriously. We exhibit here, however, another large and interesting class of logics-roughly, the Boolean extensions of theW — (...) free relevant logics (and, precisely, the well-behaved subsystems of the 4-valued logicBN4) — for which γ fails. (shrink)
This paper proves decidability of a range of weak relevant logics using decision procedures based on the Routley-Meyer semantics. Logics are categorized as F-logics, for those proved decidable using a filtration method, and U-logics, for those proved decidable using a direct method. Both of these methods are set out as reductio methods, in the style of Hughes and Cresswell. We also examine some extensions of the U-logics where the method fails and infinite sequences of worlds can be generated.
We provide five semantic preservation properties which apply to the various rules -- primitive, derived and admissible -- of Hilbert-style axiomatizations of relevant logics. These preservation properties are with respect to the Routley-Meyer semantics, and consist of various truth- preservations and validity-preservations from the premises to the conclusions of these rules. We establish some deduction theorems, some persistence theorems and some soundness and completeness theorems, for these preservation properties. We then apply the above ideas, as best we can, to the (...) classical sentential and predicate calculi, to normal and non- normal modal logics, and to many- valued logics. (shrink)
We collect together some misgivings about the logic R of relevant inplication, and then give support to a weak entailment logic $DJ^{d}$ . The misgivings centre on some recent negative results concerning R, the conceptual vacuousness of relevant implication, and the treatment of classical logic. We then rectify this situation by introducing an entailment logic based on meaning containment, rather than meaning connection, which has a better relationship with classical logic. Soundness and completeness results are proved for $DJ^{d}$ with respect (...) to a content semantics, which embraces the concept of meaning containment. (shrink)
We provide a semantics for relevant logics with addition of Aristotle's Thesis, ∼(A→∼A) and also Boethius,(A→B)→∼(A→∼B). We adopt the Routley-Meyer affixing style of semantics but include in the model structures a regulatory structure for all interpretations of formulae, with a view to obtaining a lessad hoc semantics than those previously given for such logics. Soundness and completeness are proved, and in the completeness proof, a new corollary to the Priming Lemma is introduced (c.f.Relevant Logics and their Rivals I, Ridgeview, 1982).
This paper uses the relevant logic, MCQ, of meaning containment to explore mathematics without various classical theses, in particular, without the law of excluded middle.
The standard Hilbert-style of axiomatic system yields the assertion of axioms and, via the use of rules, the assertion of theorems. However, there has been little work done on the corresponding axiomatic rejection of non-theorems. Such Hilbert-style rejection would be achieved by the inclusion of certain rejection-axioms and, by use of rejection-rules , the establishment of rejection-theorems . We will call such a proof a rejection-proof . The ideal to aim for would be for the theorems and r-theorems to bemutually (...) exclusive and exhaustive. That is, if a formula A is a theorem then it is not an r-theorem, and if A is a non-theorem then it is an r-theorem. In this paper, I present a rejecion system for the first-degree formulae of a large number of relevant logics. (shrink)
Four Basic Logical Issues: The paper addresses what we see as the four major issues in logic. The overriding issue is that of the choice of logic. We start with some discussion of the preliminary issue of whether there is such a 'one true logic,' but we reserve the main discussion for the first issue of 'classical logic versus nonclassical logic.' Here, we discuss the role of meaning and truth, the relation between classical logic and classical negation, and whether and, (...) if so, how classical logic should reside at the base world. Given the argument in favor of an overall use of nonclassical logic, the second issue is that of the choice of nonclassical logic. Brady's logic MC of meaning containment is argued for, with some comparison made with other relevant logics. For the remaining two issues, we make a case for relevant deduction, in comparison with classical deduction, and we explore possibilities for the appropriate metalogic, comparing classical and nonclassical approaches. (shrink)
This paper surveys the various forms of Deduction Theorem for a broad range of relevant logics. The logics range from the basic system B of Routley-Meyer through to the system R of relevant implication, and the forms of Deduction Theorem are characterized by the various formula representations of rules that are either unrestricted or restricted in certain ways. The formula representations cover the iterated form,A 1 .A 2 . ... .A n B, the conjunctive form,A 1&A 2 & ...A n (...) B, the combined conjunctive and iterated form, enthymematic version of these three forms, and the classical implicational form,A 1&A 2& ...A n B. The concept of general enthymeme is introduced and the Deduction Theorem is shown to apply for rules essentially derived using Modus Ponens and Adjunction only, with logics containing either (A B)&(B C) .A C orA B .B C .A C. (shrink)
In part I, we presented an algebraic-style of semantics, which we called “content semantics,” for quantified relevant logics based on the weak systemBBQ. We showed soundness and completeness with respect to theunreduced semantics ofBBQ. In part II, we proceed to show soundness and completeness for extensions ofBBQ with respect to this type of semantics. We introducereduced semantics which requires additional postulates for primeness and saturation. We then conclude by showing soundness and completeness forBB d Q and its extentions with respect (...) to this reduced semantics. (shrink)
We present an algebraic-style of semantics, which we call a content semantics, for quantified relevant logics based on the weak system BBQ. We show soundness and completeness for all quantificational logics extending BBQ and also treat reduced modelling for all systems containing BB d Q. The key idea of content semantics is that true entailments AB are represented under interpretation I as content containments, i.e. I(A)I(B) (or, the content of A contains that of B). This is opposed to the truth-functional (...) way which represents true entailments as truth-preservations over all set-ups (or worlds), i.e. (VaK) (if I(A, a) = T then I(B, a)= T). (shrink)
We start by noting that the set-theoretic and semantic paradoxes are framed in terms of a definition or series of definitions. In the process of deriving paradoxes, these definitions are logically represented by a logical equivalence. We will firstly examine the role and usage of definitions in the derivation of paradoxes, both set-theoretic and semantic. We will see that this examination is important in determining how the paradoxes were created in the first place and indeed how they are to be (...) solved in a uniform way. There are three features that are special about these definitions used in the derivation of most of the above paradoxes. The first is the use of self-reference between the definiens and the definiendum, the second is the generality of the definiendum, and the third is the under-determination and over-determination of concepts that usually occur as a result of these definitions. We will examine the impact of these three features on the logical representation of definitions and show how this representation then leads to a uniform paradox solution using an appropriate logic that is both paraconsistent and paracomplete. However, it is the paracompleteness, exhibited through the rejection of the Law of Excluded Middle, together with the rejection of contraction principles, that enables the solution of the paradoxes to go through. We characterize definitions as involving syntactic identity and/or meaning identity. We point out that some paradoxes do not have explicit self-reference or circularity and some may not utilize the generality of the definiendum, but the general characterizations of definitions that we give will still apply. We also look beyond all this to paradoxes that rely on illicit definitions between objects that are essentially different to start with. (shrink)