Structural proof theory is a branch of logic that studies the general structure and properties of logical and mathematical proofs. This book is both a concise introduction to the central results and methods of structural proof theory, and a work of research that will be of interest to specialists. The book is designed to be used by students of philosophy, mathematics and computer science. The book contains a wealth of results on proof-theoretical systems, including extensions of such systems from logic (...) to mathematics, and on the connection between the two main forms of structural proof theory - natural deduction and sequent calculus. The authors emphasize the computational content of logical results. A special feature of the volume is a computerized system for developing proofs interactively, downloadable from the web and regularly updated. (shrink)
A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel-Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.
Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...) restricts its use to cases in which the premiss does not depend on assumptions. This restriction is entirely analogous to the restriction of the rule of universal generalization of first-order logic. A necessitation rule with this restriction permits a proof of the deduction theorem in its usual formulation. Other suggestions presented in the literature to deal with the problem are reviewed, and the present solution is argued to be preferable to the other alternatives. A contraction-and cut-free sequent calculus equivalent to the Hubert system for basic modal logic shows the standard failure argument untenable by proving the underivability of DA from A. (shrink)
Machine generated contents note: Prologue: Hilbert's Last Problem; 1. Introduction; Part I. Proof Systems Based on Natural Deduction: 2. Rules of proof: natural deduction; 3. Axiomatic systems; 4. Order and lattice theory; 5. Theories with existence axioms; Part II. Proof Systems Based on Sequent Calculus: 6. Rules of proof: sequent calculus; 7. Linear order; Part III. Proof Systems for Geometric Theories: 8. Geometric theories; 9. Classical and intuitionistic axiomatics; 10. Proof analysis in elementary geometry; Part IV. Proof Systems for Nonclassical (...) Logics: 11. Modal logic; 12. Quantified modal logic, provability logic, and so on; Bibliography; Index of names; Index of subjects. (shrink)
Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the (...) explanation of the rules. (shrink)
A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...) with equality in which also cuts on the equality axioms are eliminated. (shrink)
The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
Geometric theories are presented as contraction- and cut-free systems of sequent calculi with mathematical rules following a prescribed rule-scheme that extends the scheme given in Negri and von Plato. Examples include cut-free calculi for Robinson arithmetic and real closed fields. As an immediate consequence of cut elimination, it is shown that if a geometric implication is classically derivable from a geometric theory then it is intuitionistically derivable.
Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class (...) is found. The method is a synthesis of a generation of calculi with internalized relational semantics, a Tait–Schütte–Takeuti style completeness proof, and procedures to finitize the countermodel construction. Finitizations for intuitionistic propositional logic are obtained through the search for a minimal derivation, through pruning of infinite branches in search trees by means of a suitable syntactic counterpart of semantic filtration, or through a proof-theoretic embedding into an appropriate provability logic. A number of examples illustrates the method, its subtleties, challenges, and present scope. (shrink)
That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can (...) be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms. (shrink)
Anti-realist epistemic conceptions of truth imply what is called the knowability principle: All truths are possibly known. The principle can be formalized in a bimodal propositional logic, with an alethic modality ${\diamondsuit}$ and an epistemic modality ${\mathcal{K}}$, by the axiom scheme ${A \supset \diamondsuit \mathcal{K} A}$. The use of classical logic and minimal assumptions about the two modalities lead to the paradoxical conclusion that all truths are known, ${A \supset \mathcal{K} A}$. A Gentzen-style reconstruction of the Church–Fitch paradox is presented (...) following a labelled approach to sequent calculi. First, a cut-free system for classical bimodal logic is introduced as the logical basis for the Church–Fitch paradox and the relationships between ${\mathcal {K}}$ and ${\diamondsuit}$ are taken into account. Afterwards, by exploiting the structural properties of the system, in particular cut elimination, the semantic frame conditions that correspond to KP are determined and added in the form of a block of nonlogical inference rules. Within this new system for classical and intuitionistic “knowability logic”, it is possible to give a satisfactory cut-free reconstruction of the Church–Fitch derivation and to confirm that OP is only classically derivable, but neither intuitionistically derivable nor intuitionistically admissible. Finally, it is shown that in classical knowability logic, the Church–Fitch derivation is nothing else but a fallacy and does not represent a real threat for anti-realism. (shrink)
This paper provides a proof-theoretic study of quantified non-normal modal logics. It introduces labelled sequent calculi based on neighbourhood semantics for the first-order extension, with both varying and constant domains, of monotone NNML, and studies the role of the Barcan formulas in these calculi. It will be shown that the calculi introduced have good structural properties: invertibility of the rules, height-preserving admissibility of weakening and contraction and syntactic cut elimination. It will also be shown that each of the calculi introduced (...) is sound and complete with respect to the appropriate class of neighbourhood frames. In particular, the completeness proof constructs a formal derivation for derivable sequents and a countermodel for non-derivable ones, and gives a semantic proof of the admissibility of cut. (shrink)
A proof-theoretical treatment of collectively accepted group beliefs is presented through a multi-agent sequent system for an axiomatization of the logic of acceptance. The system is based on a labelled sequent calculus for propositional multi-agent epistemic logic with labels that correspond to possible worlds and a notation for internalized accessibility relations between worlds. The system is contraction- and cut-free. Extensions of the basic system are considered, in particular with rules that allow the possibility of operative members or legislators. Completeness with (...) respect to the underlying Kripke semantics follows from a general direct and uniform argument for labelled sequent calculi extended with mathematical rules for frame properties. As an example of the use of the calculus we present an analysis of the discursive dilemma. (shrink)
A sequent calculus is given in which the management of weakening and contraction is organized as in natural deduction. The latter has no explicit weakening or contraction, but vacuous and multiple discharges in rules that discharge assumptions. A comparison to natural deduction is given through translation of derivations between the two systems. It is proved that if a cut formula is never principal in a derivation leading to the right premiss of cut, it is a subformula of the conclusion. Therefore (...) it is sufficient to eliminate those cuts that correspond to detour and permutation conversions in natural deduction. (shrink)
A proof-theoretical analysis of elementary theories of order relations is effected through the formulation of order axioms as mathematical rules added to contraction-free sequent calculus. Among the results obtained are proof-theoretical formulations of conservativity theorems corresponding to Szpilrajn’s theorem on the extension of a partial order into a linear one. Decidability of the theories of partial and linear order for quantifier-free sequents is shown by giving terminating methods of proof-search.
The logic of Conditional Beliefs has been introduced by Board, Baltag, and Smets to reason about knowledge and revisable beliefs in a multi-agent setting. In this article both the semantics and the proof theory for this logic are studied. First, a natural semantics forCDLis defined in terms of neighbourhood models, a multi-agent generalisation of Lewis’ spheres models, and it is shown that the axiomatization ofCDLis sound and complete with respect to this semantics. Second, it is shown that the neighbourhood semantics (...) is equivalent to the original one defined in terms of plausibility models, by means of a direct correspondence between the two types of models. On the basis of neighbourhood semantics, a labelled sequent calculus forCDLis obtained. The calculus has strong proof-theoretic properties, in particular admissibility of contraction and cut, and it provides a decision procedure for the logic. Furthermore, its semantic completeness is used to obtain a constructive proof of the finite model property of the logic. Finally, it is shown that other doxastic operators can be easily captured within neighbourhood semantics. This fact provides further evidence of the naturalness of neighbourhood semantics for the analysis of epistemic/doxastic notions. (shrink)
Contraction-free sequent calculi for intuitionistic theories of apartness and order are given and cut-elimination for the calculi proved. Among the consequences of the result is the disjunction property for these theories. Through methods of proof analysis and permutation of rules, we establish conservativity of the theory of apartness over the theory of equality defined as the negation of apartness, for sequents in which all atomic formulas appear negated. The proof extends to conservativity results for the theories of constructive order over (...) the usual theories of order. (shrink)
The main result of this paper is a normalizing system of natural deduction for the full language of intuitionistic linear logic. No explicit weakening or contraction rules for -formulas are needed. By the systematic use of general elimination rules a correspondence between normal derivations and cut-free derivations in sequent calculus is obtained. Normalization and the subformula property for normal derivations follow through translation to sequent calculus and cut-elimination.
Large portions of mathematics such as algebra and geometry can be formalized using first-order axiomatizations. In many cases it is even possible to use a very well-behaved class of first-order axioms, namely, what are called coherent or geometric implications. Such class of axioms can be translated to inference rules that can be added to a sequent calculus while preserving its structural properties. In this work, this fundamental result is extended to their infinitary generalizations as extensions of sequent calculi for both (...) classical and intuitionistic infinitary logic. As an application, a simple proof of the infinitary Barr’s theorem without the axioms of choice is shown. (shrink)
A constructive definition of the continuum based on formal topology is given and its basic properties studied. A natural notion of Cauchy sequence is introduced and Cauchy completeness is proved. Other results include elementary proofs of the Baire and Cantor theorems. From a classical standpoint, formal reals are seen to be equivalent to the usual reals. Lastly, the relation of real numbers as a formal space to other approaches to constructive real numbers is determined.
A uniform calculus for linear logic is presented. The calculus has the form of a natural deduction system in sequent calculus style with general introduction and elimination rules. General elimination rules are motivated through an inversion principle, the dual form of which gives the general introduction rules. By restricting all the rules to their single-succedent versions, a uniform calculus for intuitionistic linear logic is obtained. The calculus encompasses both natural deduction and sequent calculus that are obtained as special instances from (...) the uniform calculus. Other instances give all the invertibilities and partial invertibilities for the sequent calculus rules of linear logic. The calculus is normalizing and satisfies the subformula property for normal derivations. (shrink)
The decision problem for positively quantified formulae in the theory of linearly ordered Heyting algebras is known, as a special case of work of Kreisel, to be solvable; a simple solution is here presented, inspired by related ideas in Gödel-Dummett logic.
In 1968, Orevkov presented proofs of conservativity of classical over intuitionistic and minimal predicate logic with equality for seven classes of sequents, what are known as Glivenko classes. The proofs of these results, important in the literature on the constructive content of classical theories, have remained somehow cryptic. In this paper, direct proofs for more general extensions are given for each class by exploiting the structural properties of G3 sequent calculi; for five of the seven classes the results are strengthened (...) to height-preserving statements, and it is further shown that the constructive and minimal proofs are identical in structure to the classical proof from which they are obtained. (shrink)
A sequent calculus is given in which the management of weakening and contraction is organized as in natural deduction. The latter has no explicit weakening or contraction, but vacuous and multiple discharges in rules that discharge assumptions. A comparison to natural deduction is given through translation of derivations between the two systems. It is proved that if a cut formula is never principal in a derivation leading to the right premiss of cut, it is a subformula of the conclusion. Therefore (...) it is sufficient to eliminate those cuts that correspond to detour and permutation conversions in natural deduction. (shrink)
In a fragment entitled Elementa Nova Matheseos Universalis Leibniz writes “the mathesis [...] shall deliver the method through which things that are conceivable can be exactly determined”; in another fragment he takes the mathesis to be “the science of all things that are conceivable.” Leibniz considers all mathematical disciplines as branches of the mathesis and conceives the mathesis as a general science of forms applicable not only to magnitudes but to every object that exists in our imagination, i.e. that is (...) possible at least in principle. As a general science of forms the mathesis investigates possible relations between “arbitrary objects”. It is an abstract theory of combinations and relations among objects whatsoever. In 1810 the mathematician and philosopher Bernard Bolzano published a booklet entitled Contributions to a Better-Grounded Presentation of Mathematics. There is, according to him, a certain objective connection among the truths that are germane to a certain homogeneous field of objects: some truths are the “reasons” of others, and the latter are “consequences” of the former. The reason-consequence relation seems to be the counterpart of causality at the level of a relation between true propositions. Arigorous proof is characterized in this context as a proof that shows the reason of the proposition that is to be proven. Requirements imposed on rigorous proofs seem to anticipate normalization results in current proof theory. The contributors of Mathesis Universalis, Computability and Proof, leading experts in the fields of computer science, mathematics, logic and philosophy, show the evolution of these and related ideas exploring topics in proof theory, computability theory, intuitionistic logic, constructivism and reverse mathematics, delving deeply into a contextual examination of the relationship between mathematical rigor and demands for simplification. (shrink)
Stone representation theorems are a central ingredient in the metatheory of philosophical logics and are used to establish modal embedding results in a general but indirect and non-constructive way. Their use in logical embeddings will be reviewed and it will be shown how they can be circumvented in favour of direct and constructive arguments through the methods of analytic proof theory, and how the intensional part of the representation results can be recovered from the syntactic proof of those embeddings. Analytic (...) methods will also be used to establish the embedding of subintuitionistic logics into the corresponding modal logics. Finally, proof-theoretic embeddings will be interpreted as a reduction of classes of word problems. (shrink)
In a recent paper, Negri and Pavlović have formulated a decidable sequent calculus for the logic of agency, specifically for a deliberative see-to-it-that modality, or dstit. In that paper the adequacy of the system is demonstrated by showing the derivability of the axiomatization of dstit from Belnap et al.. And while the influence of the latter book on the study of logics of agency cannot be overstated, we note that this is not the only axiomatization of that modality available. In (...) fact, an earlier one was offered in Xu :505–552, 1998). In this article we fill this lacuna by proving that this alternative axiomatization is likewise readily derivable in the system of Negri and Pavlović. (shrink)
We give a direct proof of admissibility of cut and contraction for the contraction-free sequent calculus G4ip for intuitionistic propositional logic and for a corresponding multi-succedent calculus: this proof extends easily in the presence of quantifiers, in contrast to other, indirect, proofs. i.e., those which use induction on sequent weight or appeal to admissibility of rules in other calculi.
We give a direct proof of admissibility of cut and contraction for the contraction-free sequent calculus G4ip for intuitionistic propositional logic and for a corresponding multi-succedent calculus: this proof extends easily in the presence of quantifiers, in contrast to other, indirect, proofs. i.e., those which use induction on sequent weight or appeal to admissibility of rules in other calculi.