7 found
Order:
  1.  52
    Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  2.  18
    Gregory’s Sixth Operation.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Tahl Nowik, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (1):133-144.
    In relation to a thesis put forward by Marx Wartofsky, we seek to show that a historiography of mathematics requires an analysis of the ontology of the part of mathematics under scrutiny. Following Ian Hacking, we point out that in the history of mathematics the amount of contingency is larger than is usually thought. As a case study, we analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms in his paper attempting to prove the irrationality of \. Here (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  10
    Toward a History of Mathematics Focused on Procedures.Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry - 2017 - Foundations of Science 22 (4):763-783.
    Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  4.  18
    The Mathematical Intelligencer Flunks the Olympics.Alexander E. Gutman, Mikhail G. Katz, Taras S. Kudryk & Semen S. Kutateladze - 2017 - Foundations of Science 22 (3):539-555.
    The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  27
    A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos.Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Mikhail G. Katz, Taras Kudryk, Semen S. Kutateladze & David Sherry - 2016 - Logica Universalis 10 (4):393-405.
    We examine Paul Halmos’ comments on category theory, Dedekind cuts, devil worship, logic, and Robinson’s infinitesimals. Halmos’ scepticism about category theory derives from his philosophical position of naive set-theoretic realism. In the words of an MAA biography, Halmos thought that mathematics is “certainty” and “architecture” yet 20th century logic teaches us is that mathematics is full of uncertainty or more precisely incompleteness. If the term architecture meant to imply that mathematics is one great solid castle, then modern logic tends to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  10
    Edward Nelson.Mikhail G. Katz & Semen S. Kutateladze - 2015 - Review of Symbolic Logic 8 (3):607-610.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  17
    Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation