Stephen Cole Kleene was one of the greatest logicians of the twentieth century and this book is the influential textbook he wrote to teach the subject to the next generation. It was first published in 1952, some twenty years after the publication of Godel's paper on the incompleteness of arithmetic, which marked, if not the beginning of modern logic. The 1930s was a time of creativity and ferment in the subject, when the notion of computable moved from the realm of (...) philosophical speculation to the realm of science. This was accomplished by the work of Kurt Gode1, Alan Turing, and Alonzo Church, who gave three apparently different precise definitions of computable. When they all turned out to be equivalent, there was a collective realization that this was indeed the right notion. Kleene played a key role in this process. One could say that he was there at the beginning of modern logic. He showed the equivalence of lambda calculus with Turing machines and with Godel's recursion equations, and developed the modern machinery of partial recursive functions. This textbook played an invaluable part in educating the logicians of the present. It played an important role in their own logical education.". (shrink)
Undergraduate students with no prior classroom instruction in mathematical logic will benefit from this evenhanded multipart text by one of the centuries greatest authorities on the subject. Part I offers an elementary but thorough overview of mathematical logic of first order. The treatment does not stop with a single method of formulating logic; students receive instruction in a variety of techniques, first learning model theory (truth tables), then Hilbert-type proof theory, and proof theory handled through derived rules. Part II supplements (...) the material covered in Part I and introduces some of the newer ideas and the more profound results of logical research in the twentieth century. Subsequent chapters introduce the study of formal number theory, with surveys of the famous incompleteness and undecidability results of Godel, Church, Turing, and others. The emphasis in the final chapter reverts to logic, with examinations of Godel's completeness theorem, Gentzen's theorem, Skolem's paradox and nonstandard models of arithmetic, and other theorems. Unabridged republication of the edition published by John Wiley & Sons, Inc. New York, 1967. Preface. Bibliography. Theorem and Lemma Numbers: Pages. List of Postulates. Symbols and Notations. Index. (shrink)