To explore how molecules became signs I will ask: “What sort of process is necessary and sufficient to treat a molecule as a sign?” This requires focusing on the interpreting system and its interpretive competence. To avoid assuming any properties that need to be explained I develop what I consider to be a simplest possible molecular model system which only assumes known physics and chemistry but nevertheless exemplifies the interpretive properties of interest. Three progressively more complex variants of this model (...) of interpretive competence are developed that roughly parallel an icon-index-symbol hierarchic scaffolding logic. The implication of this analysis is a reversal of the current dogma of molecular and evolutionary biology which treats molecules like DNA and RNA as the original sources of biological information. Instead I argue that the structural characteristics of these molecules have provided semiotic affordances that the interpretive dynamics of viruses and cells have taken advantage of. These molecules are not the source of biological information but are instead semiotic artifacts onto which dynamical functional constraints have been progressively offloaded during the course of evolution. (shrink)
A simple molecular system is described consisting of the reciprocal linkage between an autocatalytic cycle and a self-assembling encapsulation process where the molecular constituents for the capsule are products of the autocatalysis. In a molecular environment sufficiently rich in the substrates, capsule growth will also occur with high predictability. Growth to closure will be most probable in the vicinity of the most prolific autocatalysis and will thus tend to spontaneously enclose supportive catalysts within the capsule interior. If subsequently disrupted in (...) the presence of new substrates, the released components will initiate production of additional catalytic and capsule components that will spontaneously re-assemble into one or more autocell replicas, thereby reconstituting and sometimes reproducing the original. In a diverse molecular environment, cycles of disruption and enclosure will cause auto-cells to incidentally encapsulate other molecules as well as reactive substrates. To the extent that any captured molecule can be incorporated into the autocatalytic process by virtue of structural degeneracy of the catalytic binding sites, the altered autocell will incorporate the new type of component into subsequent replications. Such altered autocells will be progenitors of “lineages” with variant characteristics that will differentially propagate with respect to the availability of commonly required substrates. Autocells are susceptible to a limited form of evolution, capable of leading to more efficient, more environmentally fitted, and more complex forms. This provides a simple demonstration of the plausibility of open-ended reproduction and evolvability without self-replicating template molecules or maintenance of persistent nonequilibrium chemistry. This model identifies an intermediate domain between prebiotic and biotic systems and bridges the gap from nonequilibrium thermodynamics to life. (shrink)
Social animals are provisioned with pro-social orientations that transcend self-interest. Morality, as used here, describes human versions of such orientations. We explore the evolutionary antecedents of morality in the context of emergentism, giving considerable attention to the biological traits that undergird emergent human forms of mind. We suggest that our moral frames of mind emerge from our primate pro-social capacities, transfigured and valenced by our symbolic languages, cultures, and religions.
Contemporary textbooks often define evolution in terms of the replication, mutation, and selective retention of DNA sequences, ignoring the contribution of the physical processes involved. In the closing line of The Origin of Species, however, Darwin recognized that natural selection depends on prior more basic living functions, which he merely described as life’s “several powers.” For Darwin these involved the organism’s capacity to maintain itself and to reproduce offspring that preserve its critical functional organization. In modern terms we have come (...) to recognize that this involves the continual generation of complex organic molecules in complex configurations accomplished with the aid of persistent far-from-equilibrium chemical self-organizing and self-assembling processes. But reliable persistence and replication of these processes also requires constantly available constraints and boundary conditions. Organism autonomy further requires that these constraints and co-dependent dynamics are reciprocally produced, each by the other. In this paper I argue that the different constraint-amplifying dynamics of two or more self-organizing processes can be coupled so that they reciprocally generate each other’s critical supportive boundary conditions. This coupling is a higher-order constraint that effectively constitutes a sign vehicle “interpreted” by the synergistic dynamics of these co-dependent self-organizing process so that they reconstitute this same semiotic-dynamic relationship and its self-reconstituting potential in new substrates. This dynamical co-dependence constitutes Darwin’s “several powers” and is the basis of the biosemiosis that enables evolution. (shrink)
We agree with Brette's assessment that the coding metaphor has become more problematic than helpful for theories of brain and cognitive functioning. In an effort to aid in constructing an alternative, we argue that joining the insights from the dynamical systems approach with the semiotic framework of C. S. Peirce can provide a fruitful perspective.
In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory (...) of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the “bottom up” approach) and (4) how to infer the nature of the last universal common ancestor (the “top down” approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin.We also describe another family of paths motivated by a” circularity” approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question. (shrink)
Language is a spontaneously evolved emergent adaptation, not a formal computational system. Its structure does not derive from either innate or social instruction but rather self-organization and selection. Its quasi-universal features emerge from the interactions among semiotic constraints, neural processing limitations, and social transmission dynamics. The neurological processing of sentence structure is more analogous to embryonic differentiation than to algorithmic computation. The biological basis of this unprecedented adaptation is not located in some unique neurologieal structure nor the result of any (...) single mutation, but is vested in the synergistic interaction of numerous coevolved neurological biases and social dynamics. (shrink)
Language is a spontaneously evolved emergent adaptation, not a formal computational system. Its structure does not derive from either innate or social instruction but rather self-organization and selection. Its quasi-universal features emerge from the interactions among semiotic constraints, neural processing limitations, and social transmission dynamics. The neurological processing of sentence structure is more analogous to embryonic differentiation than to algorithmic computation. The biological basis of this unprecedented adaptation is not located in some unique neurologieal structure nor the result of any (...) single mutation, but is vested in the synergistic interaction of numerous coevolved neurological biases and social dynamics. (shrink)
Il arrive qu’une complexité extrême mette le modèle de la sélection naturelle au défi d’expliquer quoi que ce soit. Depuis Darwin, l’aptitude humaine au langage est incessamment citée en exemple-type de ce cas de figure. Et ceux qui ont souligné les problèmes posés par cette faculté si spécifiquement humaine n’étaient pas tous des critiques du darwinisme. On sait l’argument avancé par Alfred Russel Wallace, co-instigateur de la théorie de la sélection naturelle, et réputé plus darwiniste que ..