We generalize ∇(A), which was introduced in [Sch∞], to larger cardinals. For a regular cardinal κ>ℵ0 we denote by ∇ κ (A) the statement that and for all regular θ>κ, is stationary in It was shown in [Sch∞] that can hold in a set-generic extension of L. We here prove that can hold in a set-generic extension of L as well. In both cases we in fact get equiconsistency theorems. This strengthens results of [Rä00] and [Rä01]. is equivalent with the (...) existence of 0#. (shrink)
With increasing flexibility of technology and a shift towards competence being the core of competitive edge in worklife, the need for new organizational concepts or models which givejoint optimization across human and technological dimensions has been acknowledged in leading, innovative enterprises. National crossdisciplinary research based productivity programmes are appearing in several countries. Due to internationalization and the general shortcomings of bureaucratic organizational forms, regional networks of enterprises in cooperation with public R&D institutions seem to provide answers to needs of regions (...) to remain competitive. The paper discusses the possible role of social science in a multilevel, participative strategy for developing new, democratic and productive organizational forms in worklife. Aspects of national productivity programmes in Scandinavia, Germany and Australia are discussed in connection with the situation in Italy as analyzed through some recent research projects. (shrink)
In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...) bе also «relative» in Skolem 's sense. Skolem 's «relativity» argumentation of that kind сan bе applied to а vету wide range of problems and one сan spoke of the relativity of discreteness and continuity or, of finiiteness and infinity, or, of Cantor 's kinds of infinities, etc. The relativity of Skolemian type helps us for generaIizing Einstein 's principle of relativity from the invariance of the physical laws toward diffeomorphisms to their invariance toward anу morphisms (including and especiaIly the discrete ones). Such а kind of generalization from diffeomorphisms (then, the notion of velocity always makes sense) to anу kind of morphism (when 'velocity' mау оr maу not make sense) is an extension of the general Skolemian type оГ relativity between discreteness and continuity от between finiteness and infinity. Particularly, the Lorentz invariance is not valid in general because the notion of velocity is limited to diffeomorphisms. [п the case of entanglement, the physical interaction is discrete0. 'Velocity" and consequently, the 'Lorentz invariance'"do not make sense. Тhat is the simplest explanation ofthe argurnent EPR, which tums into а paradox оnJу if the universal validity of 'velocity' and 'Lогелtz invariance' is implicitly accepted. (shrink)
Spontaneous transitions between bound states of an atomic system, “Lamb Shift” of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations (fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system “quantum system (QS) + FE” is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ (...) R {ξ}, where R 3 and R {ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system. (shrink)
A longish (12 page) discussion of Richard Sorabji's excellent book, with a further discussion of what it means for a theory of emotions to be a cognitive theory.