This is a companion paper to Braüner where a natural deduction system for propositional hybrid logic is given. In the present paper we generalize the system to the first-order case. Our natural deduction system for first-order hybrid logic can be extended with additional inference rules corresponding to conditions on the accessibility relations and the quantifier domains expressed by so-called geometric theories. We prove soundness and completeness and we prove a normalisation theorem. Moreover, we give an axiom system first-order hybrid logic.
The main aim of the present paper is to use a proof system for hybrid modal logic to formalize what are called false-belief tasks in cognitive psychology, thereby investigating the interplay between cognition and logical reasoning about belief. We consider two different versions of the Smarties task, involving respectively a shift of perspective to another person and to another time. Our formalizations disclose that despite this difference, the two versions of the Smarties task have exactly the same underlying logical structure. (...) We also consider the Sally-Anne task, having a more complicated logical structure, presupposing a “principle of inertia” saying that a belief is preserved over time, unless there is belief to the contrary. (shrink)
In the paper (Braüner, 2001) we gave a minimal condition for the existence of a homophonic theory of truth for a modal or tense logic. In the present paper we generalise this result to arbitrary modal logics and we also show that a modal logic permits the existence of a homophonic theory of truth if and only if it permits the definition of a socalled master modality. Moreover, we explore a connection between the master modality and hybrid logic: We show (...) that if attention is restricted to bidirectional frames, then the expressive power of the master modality is exactly what is needed to translate the bounded fragment of first-order logic into hybrid logic in a truth preserving way. We believe that this throws new light on Arthur Prior's fourth grade tense logic. (shrink)
In this paper two different natural deduction systems forhybrid logic are compared and contrasted.One of the systems was originally given by the author of the presentpaper whereasthe other system under consideration is a modifiedversion of a natural deductionsystem given by Jerry Seligman.We give translations in both directions between the systems,and moreover, we devise a set of reduction rules forthe latter system bytranslation of already known reduction rules for the former system.
Hybrid logics are a principled generalization of both modal logics and description logics, a standard formalism for knowledge representation. In this paper we give the first constructive version of hybrid logic, thereby showing that it is possible to hybridize constructive modal logics. Alternative systems are discussed, but we fix on a reasonable and well-motivated version of intuitionistic hybrid logic and prove essential proof-theoretical results for a natural deduction formulation of it. Our natural deduction system is also extended with additional inference (...) rules corresponding to conditions on the accessibility relations expressed by so-called geometric theories. Thus, we give natural deduction systems in a uniform way for a wide class of constructive hybrid logics. This shows that constructive hybrid logics are a viable enterprise and opens up the way for future applications. (shrink)
In this paper we give axiom systems for classical and intuitionistic hybrid logic. Our axiom systems can be extended with additional rules corresponding to conditions on the accessibility relation expressed by so-called geometric theories. In the classical case other axiomatisations than ours can be found in the literature but in the intuitionistic case no axiomatisations have been published. We consider plain intuitionistic hybrid logic as well as a hybridized version of the constructive and paraconsistent logic N4.
A hybrid logic is obtained by adding to an ordinary modal logic further expressive power in the form of a second sort of propositional symbols called nominals and by adding so-called satisfaction operators. In this paper we consider hybridized versions of S5 (“the logic of everywhere”) and the modal logic of inequality (“the logic of elsewhere”). We give natural deduction systems for the logics and we prove functional completeness results.
This is primarily a conceptual paper. The goal of the paper is to put into perspective the proof-theory of hybrid logic and in particular, try to give an answer to the following question: Why does the proof-theory of hybrid logic work so well compared to the proof-theory of ordinary modal logic? Roughly, there are two different kinds of proof systems for modal logic: Systems where the formulas involved in the rules are formulas of the object language, that is, ordinary modal-logical (...) formulas, and systems where the formulas involved in the rules are metalingustic formulas obtained by attaching labels representing possible worlds to ordinary modal-logical formulas. Systems of the second kind often also involve an explicit representation of the accessibility relation. From a proof-theoretic point of view, modal-logical systems of the first kind are less well-behaved than systems of the second kind. It turns out that this can be remedied by hybridization, that is, hybridization of modal logics enables the formulation of well-behaved proof systems without involving metalinguistic machinery. What has happened is that the metalinguistic machinery has been internalized in the object language. This gives an answer to the initial question, which is that the proof-theory of hybrid logic works so well because the metalinguistic semantic machinery has been internalized in the object language. (shrink)
In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained (...) in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise. (shrink)
In this paper we define a family of many-valued semantics for hybrid logic, where each semantics is based on a finite Heyting algebra of truth-values. We provide sound and complete tableau systems for these semantics. Moreover, we show how the tableau systems can be made terminating and thereby give rise to decision procedures for the logics in question. Our many-valued hybrid logics turn out to be "intermediate" logics between intuitionistic hybrid logic and classical hybrid logic in a specific sense explained (...) in the paper. Our results show that many-valued hybrid logic is indeed a natural enterprise. (shrink)