We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...) we further investigate when they are categorical. We also obtain results on the index sets of computable equivalence structures. (shrink)
With every new recursive relation R on a recursive model , we consider the images of R under all isomorphisms from to other recursive models. We call the set of Turing degrees of these images the degree spectrum of R on , and say that R is intrinsically r.e. if all the images are r.e. C. Ash and A. Nerode introduce an extra decidability condition on , expressed in terms of R. Assuming this decidability condition, they prove that R is (...) intrinsically r.e. if and only if a natural recursive-syntactic condition is satisfied. We show that, while a recursive non-intrinsically r.e. relation may have a two element degree spectrum, a non-intrinsically r.e. relation which satisfies the Ash–Nerode decidability condition has an infinite degree spectrum. We also study several related decidability conditions and their effects on the degree spectra, including some conditions which are sufficient to obtain every r.e. degree in a spectrum. (shrink)
We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...) categorical if for all computable isomorphic copies of , there is an isomorphism from onto , which is . We prove that for every computable successor ordinal α, there is a computable, categorical structure, which is not relatively categorical. This generalizes the result of Goncharov that there is a computable, computably categorical structure, which is not relatively computably categorical.An additional relation R on the domain of a computable structure is intrinsically on if in all computable isomorphic copies of , the image of R is . We prove that for every computable successor ordinal α, there is an intrinsically relation on a computable structure, which not relatively intrinsically . This generalizes the result of Manasse that there is an intrinsically computably enumerable relation on a computable structure, which is not relatively intrinsically computably enumerable.The dimension of a structure is the number of computable isomorphic copies, up to isomorphisms. We prove that for every computable successor ordinal α and every n≥1, there is a computable structure with dimension n. This generalizes the result of Goncharov that there is a structure of computable dimension n for every n≥1.Finally, we prove that for every computable successor ordinal α, there is a countable structure with isomorphic copies in just the Turing degrees of sets X such that relative to X is not . In particular, for every finite n, there is a structure with isomorphic copies in exactly the non- Turing degrees. This generalizes the result obtained by Wehner, and independently by Slaman, that there is a structure with isomorphic copies in exactly the nonzero Turing degrees. (shrink)
A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let be a computable model and let R be an extra relation on the domain of . That is, R is not named in the language of . We define to be the set of Turing degrees of the images f under all isomorphisms f from to computable models. We investigate conditions on and R which are sufficient and necessary for to (...) contain every Turing degree. These conditions imply that if every Turing degree 0″ can be realized in via an isomorphism of the same Turing degree as its image of R, then contains every Turing degree. We also discuss an example of and R whose coincides with the Turing degrees which are 0′. (shrink)
We construct a recursive model , a recursive subset R of its domain, and a Turing degree x 0 satisfying the following condition. The nonrecursive images of R under all isomorphisms from to other recursive models are of Turing degree x and cannot be recursively enumerable.
We consider a recursive model and an additional recursive relation R on its domain, such that there are uncountably many different images of R under isomorphisms from to some recursive model isomorphic to . We study properties of the set of Turing degrees of all these isomorphic images of R on the domain of.
We investigate effective categoricity of computable Abelian p-groups . We prove that all computably categorical Abelian p-groups are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. We investigate which computable Abelian p-groups are categorical and relatively categorical.
We establish that for every computably enumerable (c.e.) Turing degree b the upper cone of c.e. Turing degrees determined by b is the degree spectrum of the successor relation of some computable linear ordering. This follows from our main result, that for a large class of linear orderings the degree spectrum of the successor relation is closed upward in the c.e. Turing degrees.
A Turing degree d is homogeneous bounding if every complete decidable (CD) theory has a d-decidable homogeneous model A, i.e., the elementary diagram De (A) has degree d. It follows from results of Macintyre and Marker that every PA degree (i.e., every degree of a complete extension of Peano Arithmetic) is homogeneous bounding. We prove that in fact a degree is homogeneous bounding if and only if it is a PA degree. We do this by showing that there is a (...) single CD theory T such that every homogeneous model of T has a PA degree. (shrink)
Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...) a quantifier-free formula. We give some sufficient or necessary conditions for a Fraïssé limit to be spectrally universal. As an application, we prove that the computable atomless Boolean algebra is spectrally universal. (shrink)
We investigate computability theoretic and topological properties of spaces of orders on computable orderable groups. A left order on a group G is a linear order of the domain of G, which is left-invariant under the group operation. Right orders and bi-orders are defined similarly. In particular, we study groups for which the spaces of left orders are homeomorphic to the Cantor set, and their Turing degree spectra contain certain upper cones of degrees. Our approach unifies and extends Sikora’s [28] (...) investigation of orders on groups in topology and Solomon’s [31] investigation of these orders in computable algebra. Furthermore, we establish that a computable free group Fn of rank n>1 has a bi-order in every Turing degree. (shrink)
We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is ${\Sigma _{1}^{1}}$ or ${\Pi _{1}^{1}}$ , and also obtain the analogous result for antichains. On the other hand, we show that every computable partial ordering which has an infinite chain must have an infinite chain that is the difference of two ${\Pi _{1}^{1}}$ sets. Our main result is that there (...) is a computably axiomatizable theory K of partial orderings such that K has a computable model with arbitrarily long finite chains but no computable model with an infinite chain. We also prove the corresponding result for antichains. Finally, we prove that if a computable partial ordering ${\mathcal{A}}$ has the feature that for every ${\mathcal{B} \cong \mathcal{A}}$ , there is an infinite chain or antichain that is ${\Delta _{2}^{0}}$ relative to ${\mathcal{B}}$ , then we have uniform dichotomy: either for all copies ${\mathcal{B}}$ of ${\mathcal{A}}$ , there is an infinite chain that is ${\Delta _{2}^{0}}$ relative to ${\mathcal{B}}$ , or for all copies ${\mathcal{B}}$ of ${\mathcal{A}}$ , there is an infinite antichain that is ${\Delta _{2}^{0}}$ relative to ${\mathcal{B}}$. (shrink)
We show that for every computable limit ordinal α, there is a computable structure A that is $\Delta _\alpha ^0 $ categorical, but not relatively $\Delta _\alpha ^0 $ categorical (equivalently. it does not have a formally $\Sigma _\alpha ^0 $ Scott family). We also show that for every computable limit ordinal a, there is a computable structure A with an additional relation R that is intrinsically $\Sigma _\alpha ^0 $ on A. but not relatively intrinsically $\Sigma _\alpha ^0 $ (...) on A (equivalently, it is not definable by a computable $\Sigma _\alpha $ formula with finitely many parameters). Earlier results in [7], [10], and [8] establish the same facts for computable successor ordinals α. (shrink)
We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
We consider embeddings of structures which preserve spectra: if g: M → S with S computable, then M should have the same Turing degree spectrum (as a structure) that g(M) has (as a relation on S). We show that the computable dense linear order L is universal for all countable linear orders under this notion of embedding, and we establish a similar result for the computable random graph G. Such structures are said to be spectrally universal. We use our results (...) to answer a question of Goncharov, and also to characterize the possible spectra of structures as precisely the spectra of unary relations on G. Finally, we consider the extent to which all spectra of unary relations on the structure L may be realized by such embeddings, offering partial results and building the first known example of a structure whose spectrum contains precisely those degrees c with c′ ≥T 0″. (shrink)
We study computability theoretic properties of and equivalence structures and how they differ from computable equivalence structures or equivalence structures that belong to the Ershov difference hierarchy. Our investigation includes the complexity of isomorphisms between equivalence structures and between equivalence structures.
We study the relationship between algebraic structures and their inverse semigroups of partial automorphisms. We consider a variety of classes of natural structures including equivalence structures, orderings, Boolean algebras, and relatively complemented distributive lattices. For certain subsemigroups of these inverse semigroups, isomorphism of the subsemigroups yields isomorphism of the underlying structures. We also prove that for some classes of computable structures, we can reconstruct a computable structure, up to computable isomorphism, from the isomorphism type of its inverse semigroup of computable (...) partial automorphisms. (shrink)
We construct a computable vector space with the trivial computable automorphism group, but with the dependence relations as complicated as possible, measured by their Turing degrees. As a corollary, we answer a question asked by A.S. Morozov in [Rigid constructive modules, Algebra and Logic, 28 570–583 ; 379–387 ].
R. Shore proved that every recursively enumerable set can be split into two nowhere simple sets. Splitting theorems play an important role in recursion theory since they provide information about the lattice ϵ of all r. e. sets. Nowhere simple sets were further studied by D. Miller and J. Remmel, and we generalize some of their results. We characterize r. e. sets which can be split into two effectively nowhere simple sets, and r. e. sets which can be split into (...) two r. e. non-nowhere simple sets. We show that every r. e. set is either the disjoint union of two effectively nowhere simple sets or two noneffectively nowhere simple sets. We characterize r. e. sets whose every nontrivial splitting is into nowhere simple sets, and r. e. sets whose every nontrivial splitting is into effectively nowhere simple sets. R. Shore proved that for every effectively nowhere simple set A, the lattice L* is effectively isomorphic to ϵ*, and that there is a nowhere simple set A such that L* is not effectively isomorphic to ϵ*. We prove that every nonzero r. e. Turing degree contains a noneffectively nowhere simple set A with the lattice L* effectively isomorphic to ϵ*. (shrink)
Let be an infinite computable structure, and let R be an additional computable relation on its domain A. The syntactic notion of formal hypersimplicity of R on , first introduced and studied by Hird, is analogous to the computability-theoretic notion of hypersimplicity of R on A, given the definability of certain effective sequences of relations on A. Assuming that R is formally hypersimple on , we give general sufficient conditions for the existence of a computable isomorphic copy of on whose (...) domain the image of R is hypersimple and of arbitrary nonzero computably enumerable Turing degree. (shrink)