We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
We investigate both iteration hypotheses and extender models at the level of one supercompact cardinal. The HOD Conjecture is introduced and shown to be a key conjecture both for the Inner Model Program and for understanding the limits of the large cardinal hierarchy. We show that if the HOD Conjecture is true then this provides strong evidence for the existence of an ultimate version of Gödel's constructible universe L. Whether or not this "ultimate" L exists is now arguably the central (...) issue for the Inner Model Program. (shrink)
The HOD Dichotomy Theorem states that if there is an extendible cardinal, δ, then either HOD is “close” to V or HOD is “far” from V. The question is whether the future will lead to the first or the second side of the dichotomy. Is HOD “close” to V, or “far” from V? There is a program aimed at establishing the first alternative—the “close” side of the HOD Dichotomy. This is the program of inner model theory. In recent years the (...) third author has provided evidence that there is an ultimate inner model—Ultimate-L—and he has isolated a natural conjecture associated with the model—the Ultimate-L Conjecture. This conjecture implies that that the first alternative holds—HOD is “close” to V. This is the future in which pattern prevails. In this paper we introduce a very different program, one aimed at establishing the second alternative—the “far” side of the HOD Dichotomy. This is the program of large cardinals beyond choice. Kunen famously showed that if AC holds then there cannot be a Reinhardt cardinal. It has remained open whether Reinhardt cardinals are consistent in ZF alone. It turns out that there is an entire hierarchy of choiceless large cardinals of which Reinhardt cardinals are only the beginning, and, surprisingly, this hierarchy appears to be highly ordered and amenable to systematic investigation, as we shall show in this paper. The point is that if these choiceless large cardinals are consistent then the Ultimate-L Conjecture must fail. This is the future where chaos prevails. (shrink)
We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...) the Determinacy Transfer Theorem for arbitrary [Formula: see text], namely the statement that [Formula: see text] determinacy implies [Formula: see text] determinacy. (shrink)
We investigate large cardinal axioms beyond the level of ω-huge in context of the universality of the suitable extender models of [Suitable Extender Models I, J. Math. Log.10 101–339]. We show that there is an analog of ADℝ at the level of ω-huge, more precisely the construction of the minimum model of ADℝ generalizes to the level of Vλ+1. This allows us to formulate the indicated generalization of ADℝ and then to prove that if the axiom holds in V at (...) a proper class of λ then in every suitable extender model, the axiom holds at a proper class of λ. (shrink)
We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...) the Determinacy Transfer Theorem for arbitrary [Formula: see text], namely the statement that [Formula: see text] determinacy implies [Formula: see text] determinacy. (shrink)
One of the most distinctive and intriguing developments of modern set theory has been the realization that, despite widely divergent incentives for strengthening the standard axioms, there is essentially only one way of ascending the higher reaches of infinity. To the mathematical realist the unexpected convergence suggests that all these axiomatic extensions describe different aspects of the same underlying reality.
. We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first (...) order theory of the enumeration degrees of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Sigma^0_2$\end{document} sets is not decidable. (shrink)
In 1985 the second author showed that if there is a proper class of measurable Woodin cardinals and $V^{B1} $ and $V^{B2} $ are generic extensions of V satisfying CH then $V^{B1} $ and $V^{B2} $ agree on all $\Sigma _1^2 $ -statements. In terms of the strong logic Ω-logic this can be reformulated by saying that under the above large cardinal assumption ZFC + CH is Ω-complete for $\Sigma _1^2 $ Moreover. CH is the unique $\Sigma _1^2 $ -statement (...) with this feature in the sense that any other $\Sigma _1^2 $ -statement with this feature is Ω-equivalent to CH over ZFC. It is natural to look for other strengthenings of ZFC that have an even greater degree of Ω-completeness. For example, one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for all of third-order arithmetic. Going further, for each specifiable segment $V_\lambda $ of the universe of sets (for example, one might take $V_\lambda $ to be the least level that satisfies there is a proper class of huge cardinals), one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for the theory of $V_\lambda $ . If such theories exist, extend one another, and are unique in the sense that any other such theory B with the same level of Ω-completeness as A is actually Ω-equivalent to A over ZFC, then this would show that there is a unique Ω-complete picture of the successive fragments of the universe of sets and it would make for a very strong case for axioms complementing large cardinal axioms. In this paper we show that uniqueness must fail. In particular, we show that if there is one such theory that Ω-implies CH then there is another that Ω-implies¬CH. (shrink)
Assume ZF + AD +V=L and letκ< Θ be an uncountable cardinal. We show thatκis Jónsson, and that if cof = ω thenκis Rowbottom. We also establish some other partition properties.
The results of this paper concern the effective cardinal structure of the subsets of [ω1]<ω1, the set of all countable subsets of ω1. The main results include dichotomy theorems and theorems which show that the effective cardinal structure is complicated.
We consider the possible complexity of the set of reals belonging to an inner model M of set theory. We show that if this set is analytic then either 1M is countable or else all reals are in M. We also show that if an inner model contains a superperfect set of reals as a subset then it contains all reals. On the other hand, it is possible to have an inner model M whose reals are an uncountable Fσ set (...) and which does not have all reals. A similar construction shows that there can be an inner model M which computes correctly 1, contains a perfect set of reals as a subset and yet not all reals are in M. These results were motivated by questions of H. Friedman and K. Prikry. (shrink)
Machine generated contents note: Introduction Rudy Rucker; Part I. Perspectives on Infinity from History: 1. Infinity as a transformative concept in science and theology Wolfgang Achtner; Part II. Perspectives on Infinity from Mathematics: 2. The mathematical infinity Enrico Bombieri; 3. Warning signs of a possible collapse of contemporary mathematics Edward Nelson; Part III. Technical Perspectives on Infinity from Advanced Mathematics: 4. The realm of the infinite W. Hugh Woodin; 5. A potential subtlety concerning the distinction between determinism and nondeterminism W. (...) Hugh Woodin; 6. Concept calculus: much better than Harvey M. Friedman; Part IV. Perspectives on Infinity from Physics and Cosmology: 7. Some considerations on infinity in physics Carlo Rovelli; 8. Cosmological intimations of infinity Anthony Aguirre; 9. Infinity and the nostalgia of the stars Marco Bersanelli; 10. Infinities in cosmology Michael Heller; Part V. Perspectives on Infinity from Philosophy and Theology: 11. God and infinity: directions for future research Graham Oppy; 12. Notes on the concept of the infinite in the history of Western metaphysics David Bentley Hart; 13. God and infinity: theological insights from Cantor's mathematics Robert J. Russell; 14. A partially skeptical response to Hart and Russell Denys A. Turner. (shrink)
This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world-renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoints, rather than a static picture of accepted views on infinity.The book starts with a historical examination of the transformation of (...) infinity, from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: Can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity. (shrink)
J. Łoś raised the following question: Under what conditions can a countable partially ordered set be extended to a dense linear order merely by adding instances of comparability ? We show that having such an extension is a Σ 1 l -complete property and so there is no Borel answer to Łoś's question. Additionally, we show that there is a natural Π 1 l -norm on the partial orders which cannot be so extended and calculate some natural ranks in that (...) norm. (shrink)
The main theorem is that the Ultrafilter Axiom of Woodin :115–37, 2011) must fail at all cardinals where the Axiom I0 holds, in all non-strategic extender models subject only to fairly general requirements on the non-strategic extender model.
We extend work of H. Friedman, L. Harrington and P. Welch to the third level of the projective hierarchy. Our main theorems say that (under appropriate background assumptions) the possibility to select definable elements of non-empty sets of reals at the third level of the projective hierarchy is equivalent to the disjunction of determinacy of games at the second level of the projective hierarchy and the existence of a core model (corresponding to this fragment of determinacy) which must then contain (...) all real numbers. The proofs use Sacks forcing with perfect trees and core model techniques. (shrink)