Order:
  1.  1
    On Ω 1 -Categorical Theories of Abelian Groups.Angus Macintyre, Joachim Reineke, J. T. Baldwin, Jan Saxl & Walter Baur - 1984 - Journal of Symbolic Logic 49 (1):317-321.
  2.  15
    Rekursive Algebren mit Kettenbedingungen.Walter Baur - 1974 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (1-3):37-46.
    No categories
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    My bibliography   2 citations  
  3.  1
    On the Elementary Theory of Quadruples of Vector Spaces.Walter Baur - 1980 - Annals of Mathematical Logic 19 (3):243-262.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  4.  1
    Rekursive Algebren mit Kettenbedingungen.Walter Baur - 1974 - Mathematical Logic Quarterly 20 (1‐3):37-46.
    No categories
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    My bibliography   2 citations  
  5.  9
    On the Elementary Theory of Pairs of Real Closed Fields. II.Walter Baur - 1982 - Journal of Symbolic Logic 47 (3):669-679.
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  6.  5
    ℵ0-Categorical Modules.Walter Baur - 1975 - Journal of Symbolic Logic 40 (2):213 - 220.
    It is shown that the first-order theory Th R (A) of a countable module over an arbitrary countable ring R is ℵ 0 -categorical if and only if $A \cong \bigoplus_{t finite, n ∈ ω, κ i ≤ ω. Furthermore, Th R (A) is ℵ 0 -categorical for all R-modules A if and only if R is finite and there exist only finitely many isomorphism classes of indecomposable R-modules.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  7.  2
    $Aleph_0$-Categorical Modules.Walter Baur - 1975 - Journal of Symbolic Logic 40 (2):213-220.
    It is shown that the first-order theory $\mathrm{Th}_R(A)$ of a countable module over an arbitrary countable ring $R$ is $\aleph_0$-categorical if and only if $A \cong \bigoplus_{t < n}A_i^{(\kappa_i)}, A_i$ finite, $n \in \omega, \kappa_i \leq \omega$. Furthermore, $\mathrm{Th}_R(A)$ is $\aleph_0$-categorical for all $R$-modules $A$ if and only if $R$ is finite and there exist only finitely many isomorphism classes of indecomposable $R$-modules.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8. Review: Martin Ziegler, Einige Unentscheidbare Korpertheorien. [REVIEW]Walter Baur - 1985 - Journal of Symbolic Logic 50 (2):552-552.
  9. Ziegler Martin. Einige Unentscheidbare Körpertheorien. Logic and Algorithmic, An International Symposium Held in Honour of Ernst Specker, Monographic No. 30, L'Enseignement Mathématique, Université de Genève, Geneva 1982, Pp. 381–392. , Pp. 269–280.). [REVIEW]Walter Baur - 1985 - Journal of Symbolic Logic 50 (2):552.