This book is the first in the field of paraconsistency to offer a comprehensive overview of the subject, including connections to other logics and applications in information processing, linguistics, reasoning and argumentation, and philosophy of science. It is recommended reading for anyone interested in the question of reasoning and argumentation in the presence of contradictions, in semantics, in the paradoxes of set theory and in the puzzling properties of negation in logic programming. Paraconsistent logic comprises a major logical theory and (...) offers the broadest possible perspective on the debate of negation in logic and philosophy. It is a powerful tool for reasoning under contradictoriness as it investigates logic systems in which contradictory information does not lead to arbitrary conclusions. Reasoning under contradictions constitutes one of most important and creative achievements in contemporary logic, with deep roots in philosophical questions involving negation and consistency This book offers an invaluable introduction to a topic of central importance in logic and philosophy. It discusses the history of paraconsistent logic; language, negation, contradiction, consistency and inconsistency; logics of formal inconsistency and the main paraconsistent propositional systems; many-valued companions, possible-translations semantics and non-deterministic semantics; paraconsistent modal logics; first-order paraconsistent logics; applications to information processing, databases and quantum computation; and applications to deontic paradoxes, connections to Eastern thought and to dialogical reasoning. (shrink)
The purpose of this paper is to present a paraconsistent formal system and a corresponding intended interpretation according to which true contradictions are not tolerated. Contradictions are, instead, epistemically understood as conflicting evidence, where evidence for a proposition A is understood as reasons for believing that A is true. The paper defines a paraconsistent and paracomplete natural deduction system, called the Basic Logic of Evidence, and extends it to the Logic of Evidence and Truth. The latter is a logic of (...) formal inconsistency and undeterminedness that is able to express not only preservation of evidence but also preservation of truth. LETj is anti-dialetheist in the sense that, according to the intuitive interpretation proposed here, its consequence relation is trivial in the presence of any true contradiction. Adequate semantics and a decision method are presented for both BLE and LETj, as well as some technical results that fit the intended interpretation. (shrink)
This paper introduces new logical systems which axiomatize a formal representation of inconsistency (here taken to be equivalent to contradictoriness) in classical logic. We start from an intuitive semantical account of inconsistent data, fixing some basic requirements, and provide two distinct sound and complete axiomatics for such semantics, LFI1 and LFI2, as well as their first-order extensions, LFI1* and LFI2*, depending on which additional requirements are considered. These formal systems are examples of what we dub Logics of Formal Inconsistency (LFI) (...) and form part of a much larger family of similar logics. We also show that there are translations from classical and paraconsistent first-order logics into LFI1* and LFI2*, and back. Hence, despite their status as subsystems of classical logic, LFI1* and LFI2* can codify any classical or paraconsistent reasoning. (shrink)
This paper introduces the logic of evidence and truth \ as an extension of the Belnap–Dunn four-valued logic \. \ is a slightly modified version of the logic \, presented in Carnielli and Rodrigues. While \ is equipped only with a classicality operator \, \ is equipped with a non-classicality operator \ as well, dual to \. Both \ and \ are logics of formal inconsistency and undeterminedness in which the operator \ recovers classical logic for propositions in its scope. (...) Evidence is a notion weaker than truth in the sense that there may be evidence for a proposition \ even if \ is not true. As well as \, \ is able to express preservation of evidence and preservation of truth. The primary aim of this paper is to propose a probabilistic semantics for \ where statements \\) and \\) express, respectively, the amount of evidence available for \ and the degree to which the evidence for \ is expected to behave classically—or non-classically for \ \). A probabilistic scenario is paracomplete when \ + P 1\), and in both cases, \ < 1\). If \ = 1\), or \ = 0\), classical probability is recovered for \. The proposition \, a theorem of \, partitions what we call the information space, and thus allows us to obtain some new versions of known results of standard probability theory. (shrink)
Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...) ZF, and can be expanded with a paraconsistent negation *, thus obtaining a paraconsistent model of ZF. The logic (PS3 ,*) coincides (up to language) with da Costa and D'Ottaviano logic J3, a 3-valued paraconsistent logic that have been proposed independently in the literature by several authors and with different motivations such as CluNs, LFI1 and MPT. We propose in this paper a family of algebraic models of ZFC based on LPT0, another linguistic variant of J3 introduced by us in 2016. The semantics of LPT0, as well as of its first-order version QLPT0, is given by twist structures defined over Boolean agebras. From this, it is possible to adapt the standard Boolean-valued models of (classical) ZFC to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. We argue that the implication operator of LPT0 is more suitable for a paraconsistent set theory than the implication of PS3, since it allows for genuinely inconsistent sets w such that [(w = w)] = 1/2 . This implication is not a 'reasonable implication' as defined by Löwe and Tarafder. This suggests that 'reasonable implication algebras' are just one way to define a paraconsistent set theory. Our twist-valued models are adapted to provide a class of twist-valued models for (PS3,*), thus generalizing Löwe and Tarafder result. It is shown that they are in fact models of ZFC (not only of ZF). (shrink)
In this paper we present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language in such a way that consistency may be logically independent of non-contradiction. We defend the view according to which logics of formal inconsistency may be interpreted as theories of logical consequence of an epistemological character. We also argue that in order to philosophically justify (...) paraconsistency there is no need to endorse dialetheism, the thesis that there are true contradictions. Furthermore, we show that mbC, a logic of formal inconsistency based on classical logic, may be enhanced in order to express the basic ideas of an intuitive interpretation of contradictions as conflicting evidence. (shrink)
In the last two decades modal logic has undergone an explosive growth, to thepointthatacompletebibliographyofthisbranchoflogic,supposingthat someone were capable to compile it, would?ll itself a ponderous volume. What is impressive in the growth of modal logic has not been so much the quick accumulation of results but the richness of its thematic dev- opments. In the 1960s, when Kripke semantics gave new credibility to the logic of modalities? which was already known and appreciated in the Ancient and Medieval times? no one could (...) have foreseen that in a short time modal logic would become a lively source of ideas and methods for analytical philosophers,historians of philosophy,linguists, epistemologists and computer scientists. The aim which oriented the composition of this book was not to write a new manual of modal logic buttoo?ertoeveryreader,evenwithnospeci?cbackground in logic, a conceptually linear path in the labyrinth of the current panorama of modal logic. The notion which in our opinion looked suitable to work as a compass in this enterprise was the notion of multimodality, or, more speci?cally, the basic idea of grounding systems on languages admitting more than one primitive modal operator. (shrink)
his paper presents a unified treatment of the propositional and first-order many-valued logics through the method of tableaux. It is shown that several important results on the proof theory and model theory of those logics can be obtained in a general way. We obtain, in this direction, abstract versions of the completeness theorem, model existence theorem (using a generalization of the classical analytic consistency properties), compactness theorem and Lowenheim-Skolem theorem. The paper is completely self-contained and includes examples of application to (...) particular many-valued formal systems. (shrink)
There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express metalogical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the logics of formal inconsistency and by the logics of formal undeterminedness. LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the validity of (...) the principle of excluded middle in a paracomplete scenario. We introduce definitions of duality between inference rules and connectives that allow comparing rules and connectives that belong to different logics. Two formal systems are studied, the logics mbC and mbD, that display the duality between paraconsistency and paracompleteness as a duality between inference rules added to a common core—in the case studied here, this common core is classical positive propositional logic. The logics mbC and mbD are equipped with recovery operators that restore classical logic for, respectively, consistent and determined propositions. These two logics are then combined obtaining a pair of LFI and undeterminedness, namely, mbCD and mbCDE. The logic mbCDE exhibits some nice duality properties. Besides, it is simultaneously paraconsistent and paracomplete, and able to recover the principles of excluded middle and explosion one at a time. The last sections offer an algebraic account for such logics by adapting the swap structures semantics framework of the LFIs the LFUs. This semantics highlights some subtle aspects of these logics, and allows us to prove decidability by means of finite nondeterministic matrices. (shrink)
The Polish logician Roman Suszko has extensively pleaded in the 1970s for a restatement of the notion of many-valuedness. According to him, as he would often repeat, “there are but two logical values, true and false.” As a matter of fact, a result by W´ojcicki-Lindenbaum shows that any tarskian logic has a many-valued semantics, and results by Suszko-da Costa-Scott show that any many-valued semantics can be reduced to a two-valued one. So, why should one even consider using logics with more (...) than two values? Because, we argue, one has to decide how to deal with bivalence and settle down the tradeoff between logical 2-valuedness and truth-functionality, from a pragmatical standpoint. -/- This paper will illustrate the ups and downs of a two-valued reduction of logic. Suszko’s reductive result is quite non-constructive.We will exhibit here a way of effectively constructing the two-valued semantics of any logic that has a truth-functional finite-valued semantics and a sufficiently expressive language. From there, as we will indicate, one can easily go on to provide those logics with adequate canonical systems of sequents or tableaux. The algorithmic methods developed here can be generalized so as to apply to many non-finitely valued logics as well —or at least to those that admit of computable quasi tabular two-valued semantics, the so-called dyadic semantics. (shrink)
After a brief promenade on the several notions of translations that appear in the literature, we concentrate on three paradigms of translations between logics: ( conservative ) translations , transfers and contextual translations . Though independent, such approaches are here compared and assessed against questions about the meaning of a translation and about comparative strength and extensibility of a logic with respect to another.
This article introduces the three-valuedweakly-intuitionistic logicI 1 as a counterpart of theparaconsistent calculusP 1 studied in [11].I 1 is shown to be complete with respect to certainthree-valued matrices. We also show that in the sense that any proper extension ofI 1 collapses to classical logic.The second part shows thatI 1 is algebraizable in the sense of Block and Pigozzi (cf. [2]) in a way very similar to the algebraization ofP 1 given in [8].
This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is (...) to define the deductive limit to this hierarchy, that is, its greatest lower deductive bound. The calculus $ \mathcal {C}$min, stronger than $ \mathcal {C}$$\scriptstyle \omega$, is first presented as a step toward this limit. As an alternative to the bivaluation semantics of $ \mathcal {C}$min presented thereupon, possible-translations semantics are then introduced and suggested as the standard technique both to give this calculus a more reasonable semantics and to derive some interesting properties about it. Possible-translations semantics are then used to provide both a semantics and a decision procedure for $ \mathcal {C}$Lim, the real deductive limit of da Costa's hierarchy. Possible-translations semantics also make it possible to characterize a precise sense of duality: as an example, $ \mathcal {D}$min is proposed as the dual to $ \mathcal {C}$min. (shrink)
This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for (...) both BLE and LET J . The meanings of the connectives of BLE and LET J , from the point of view of preservation of evidence, is explained with the aid of an inferential semantics. A formalization of the notion of evidence for BLE as proposed by M. Fitting is also reviewed here. As a novel result, the paper shows that LET J is semantically characterized through the so-called Fidel structures. Some opportunities for further research are also discussed. (shrink)
This book is dedicated to a classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal (...) logic to give a full development of Gödel's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics". (shrink)
The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form a (...) bicomplete category of which topological spaces with topological continuous functions constitute a full subcategory. We also describe other uses of translations in providing new semantics for non-classical logics and in investigating duality between them. An important subclass of translations, the conservative translations, which strongly preserve consequence relations, is introduced and studied. Some specific new examples of translations involving modal logics, many-valued logics, para- consistent logics, intuitionistic and classical logics are also described. (shrink)
We propose in this paper a family of algebraic models of ZFC based on the three-valued paraconsistent logic LPT0, a linguistic variant of da Costa and D’Ottaviano’s logic J3. The semantics is given by twist structures defined over complete Boolean agebras. The Boolean-valued models of ZFC are adapted to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. This allows for inconsistent sets w satisfying ‘not (w = w)’, where ‘not’ stands for the paraconsistent negation. Finally, our (...) framework is adapted to provide a class of twist-valued models generalizing Löwe and Tarafder’s model based on logic (PS 3,∗), showing that they are paraconsistent models of ZFC. The present approach offers more options for investigating independence results in paraconsistent set theory. (shrink)
Being a pragmatic and not a referential approach tosemantics, the dialogical formulation ofparaconsistency allows the following semantic idea tobe expressed within a semi-formal system: In anargumentation it sometimes makes sense to distinguishbetween the contradiction of one of the argumentationpartners with himself (internal contradiction) and thecontradiction between the partners (externalcontradiction). The idea is that externalcontradiction may involve different semantic contextsin which, say A and ¬A have been asserted.The dialogical approach suggests a way of studying thedynamic process of contradictions through which thetwo (...) contexts evolve for the sake of argumentation intoone system containing both contexts.More technically, we show a new, dialogical, way tobuild paraconsistent systems for propositional andfirst-order logic with classical and intuitionisticfeatures (i.e. paraconsistency both with and withouttertium non-datur) and present theircorresponding tableaux. (shrink)
Fibring is recognized as one of the main mechanisms in combining logics, with great signicance in the theory and applications of mathematical logic. However, an open challenge to bring is posed by the collapsing problem: even when no symbols are shared, certain combinations of logics simply collapse to one of them, indicating that bring imposes unwanted interconnections between the given logics. Modulated bring allows a ner control of the combination, solving the collapsing problem both at the semantic and deductive levels. (...) Main properties like soundness and completeness are shown to be preserved, comparison with bring is discussed, and some important classes of examples are analyzed with respect to the collapsing problem. (shrink)
This paper investigates the question of characterizing first-order LFIs (logics of formal inconsistency) by means of two-valued semantics. LFIs are powerful paraconsistent logics that encode classical logic and permit a finer distinction between contradictions and inconsistencies, with a deep involvement in philosophical and foundational questions. Although focused on just one particular case, namely, the quantified logic QmbC, the method proposed here is completely general for this kind of logics, and can be easily extended to a large family of quantified paraconsistent (...) logics, supplying a sound and complete semantical interpretation for such logics. However, certain subtleties involving term substitution and replacement, that are hidden in classical structures, have to be taken into account when one ventures into the realm of nonclassical reasoning. This paper shows how such difficulties can be overcome, and offers detailed proofs showing that a smooth treatment of semantical characterization can be given to all such logics. Although the paper is well-endowed in technical details and results, it has a significant philosophical aside: it shows how slight extensions of classical methods can be used to construct the basic model theory of logics that are weaker than traditional logic due to the absence of certain rules present in classical logic. Several such logics, however, as in the case of the LFIs treated here, are notorious for their wealth of models precisely because they do not make indiscriminate use of certain rules; these models thus require new methods. In the case of this paper, by just appealing to a refined version of the Principle of Explosion, or Pseudo-Scotus, some new constructions and crafty solutions to certain non-obvious subtleties are proposed. The result is that a richer extension of model theory can be inaugurated, with interest not only for paraconsistency, but hopefully to other enlargements of traditional logic. (shrink)
Abduction or retroduction, as introduced by C.S. Peirce in the double sense of searching for explanatory instances and providing an explanation is a kind of complement for usual argumentation. There is, however, an inferential step from the explanandum to the abductive explanans . Whether this inferential step can be captured by logical machinery depends upon a number of assumptions, but in any case it suffers in principle from the triviality objection: any time a singular contradictory explanans occurs, the system collapses (...) and stops working. The traditional remedies for such collapsing are the expensive mechanisms of consistency maintenance, or complicated theories of non-monotonic derivation that keep the system running at a higher cost. I intend to show that the robust logics of formal inconsistency, a particular category of paraconsistent logics which permit the internalization of the concepts of consistency and inconsistency inside the object language, provide simple yet powerful techniques for automatic abduction. Moreover, the whole procedure is capable of automatization by means of the tableau proof-procedures available for such logics. Some motivating examples are discussed in detail. (shrink)
We here attempt to address certain criticisms of the philosophical import of the so-called Brazilian approach to paraconsistency by providing some epistemic elucidations of the whole enterprise of the logics of formal inconsistency. In the course of this discussion, we substantiate the view that difficulties in reasoning under contradictions in both the Buddhist and the Aristotelian traditions can be accommodated within the precepts of the Brazilian school of paraconsistency.
Although a very recent topic in contemporary logic, the subject of combinations of logics has already shown its deep possibilities. Besides the pure philosophical interest offered by the possibility of defining mixed logic systems in which distinct operators obey logics of different nature, there are also several pragmatical and methodological reasons for considering combined logics. We survey methods for combining logics (integration of several logic systems into a homogeneous environment) as well as methods for decomposing logics, showing their interesting properties (...) and applications. (shrink)
In this paper we propose a very general de nition of combination of logics by means of the concept of sheaves of logics. We first discuss some properties of this general definition and list some problems, as well as connections to related work. As applications of our abstract setting, we show that the notion of possible-translations semantics, introduced in previous papers by the first author, can be described in categorial terms. Possible-translations semantics constitute illustrative cases, since they provide a new (...) semantical account for abstract logical systems, particularly for many-valued and paraconsistent logics. (shrink)
Polynomizing is a term that intends to describe the uses of polynomial-like representations as a reasoning strategy and as a tool for scientific heuristics. I show how proof-theory and semantics for classical and several non-classical logics can be approached from this perspective, and discuss the assessment of this prospect, in particular to recover certain ideas of George Boole in unifying logic, algebra and the differential calculus.
I argue that a compulsive seeking for just one sense of consistency is hazardous to rationality, and that observing the subtle distinctions of reasonableness between individual and groups may suggest wider, structuralistic notions of consistency, even relevant to re-assessing Gödei's Second Incompleteness Theorem and to science as a whole.
This volume is based on the papers presented at the international conference Model-Based Reasoning in Science and Technology (MBR09_BRAZIL), held at the University of Campinas (UNICAMP), Campinas, Brazil, December 2009. The presentations given at the conference explored how scientific cognition, but several other kinds as well, use models, abduction, and explanatory reasoning to produce important or creative changes in theories and concepts. Some speakers addressed the problem of model-based reasoning in technology, and stressed the issue of science and technological innovation. (...) The various contributions of the book are written by interdisciplinary researchers who are active in the area of creative reasoning in logic, science, and technology: the most recent results and achievements about the topics above are illustrated in detail in the papers. The book is divided in three parts, which cover the following main areas: part I, abduction, problem solving, and practical reasoning; part II: formal and computational aspects of model based reasoning; part III, models, mental models, representations. (shrink)
This paper discusses logical accounts of the notions of consistency and negation, and in particular explores some potential means of defining consistency and negation when expressed in modal terms. Although this can be done with interesting consequences when starting from classical normal modal logics, some intriguing cases arise when starting from paraconsistent modalities and negations, as in the hierarchy of the so-called cathodic modal paraconsistent systems (cf. Bueno-Soler, Log Univers 4(1):137–160, 2010). The paper also takes some first steps in exploring (...) the philosophical significance of such logical tools, comparing the notions of consistency and negation modally defined with the primitive notions of consistency and negation in the family of Logics of Formal Inconsistency (LFIs), suggesting some experiments on their expressive power. (shrink)
This is the preface of the special Issue: Formal Representations in Model-based Reasoning and Abduction, published at the Logic Jnl IGPL (2012) 20 (2): 367-369. doi: 10.1093/jigpal/jzq055 First published online: December 20, 2010.
The so-called phenomenon of collective intelligence is now a burgeoning movement, with several guises and examples in many areas. We briefly survey some relevant aspects of collective intelligence in several formats, such as social software, crowdfunding and convergence, and show that a formal version of this paradigm can also be posed to logic systems, by employing the notion of logic societies. The paradigm of logical societies has lead to a new notion of distributed semantics, the society semantics, with theoretical advances (...) in defining new forms of n-valued semantics in terms of k-valued semantics, for, and applications to flying security protocols. We summarise the main advances of society semantics, commenting on their general case, the possible-translations semantics and pointing to some conceptual points and some problems and directions still to be explored. (shrink)
The existence of non-standard numbers in first-order arithmetics is a semantic obstacle for modelling our arithmetical skills. This article argues that so far there is no adequate approach to overcome such a semantic obstacle, because we can also find out, and deal with, non-standard elements in Turing machines.
The prepositional calculiC n , 1 n introduced by N.C.A. da Costa constitute special kinds of paraconsistent logics. A question which remained open for some time concerned whether it was possible to obtain a Lindenbaum''s algebra forC n . C. Mortensen settled the problem, proving that no equivalence relation forC n . determines a non-trivial quotient algebra.The concept of da Costa algebra, which reflects most of the logical properties ofC n , as well as the concept of paraconsistent closure system, (...) are introduced in this paper. (shrink)
In addition to the obvious social and ethical risks, there are philosophical hazards behind artificial intelligence and machine learning. I try to raise here some critical points that might counteract some naive optimism, and warn against the possibility that synthetic intelligence may surreptitiously influence the agenda of science before we can realize it.
The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne and proposes the Ariadne Game, showing that the Principle of Ariadne, corresponds precisely to a winning strategy for the Ariadne Game. Some (...) relations to other alternative. set-theoretical principles are also briefly discussed. (shrink)
A new technique is presented for proving that a consequence system enjoys Craig interpolation or Maehara interpolation based on the fact that these properties hold in another consequence system. This technique is based on the existence of a back and forth translation satisfying some properties between the consequence systems. Some examples of translations satisfying those properties are described. Namely a translation between the global/local consequence systems induced by fragments of linear logic, a Kolmogorov-Gentzen-Gödel style translation, and a new translation between (...) the global consequence systems induced by full Lambek calculus and linear logic, mixing features of a Kiriyama-Ono style translation with features of a Kolmogorov-Gentzen-Gödel style translation. These translations establish a strong relationship between the logics involved and are used to obtain new results about whether Craig interpolation and Maehara interpolation hold in that logics . (shrink)
We present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language. We shall defend the view according to which logics of formal inconsistency are theories of logical consequence of normative and epistemic character. This approach not only allows us to make inferences in the presence of contradictions, but offers a philosophically acceptable account of paraconsistency.
This paper briefly outlines some advancements in paraconsistent logics for modelling knowledge representation and reasoning. Emphasis is given on the so-called Logics of Formal Inconsistency (LFIs), a class of paraconsistent logics that formally internalize the very concept(s) of consistency and inconsistency. A couple of specialized systems based on the LFIs will be reviewed, including belief revision and probabilistic reasoning. Potential applications of those systems in the AI area of KRR are tackled by illustrating some examples that emphasizes the importance of (...) a fine-tuned treatment of consistency in modelling reputation systems, preferences, argumentation, and evidence. (shrink)
One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...) for several systems of the hierarchy of paraconsistent logics known as Logics of Formal Inconsistency (LFIs). Because of this, these logics are uniquely characterized by semantics of non-deterministic kind. This paper offers a solution for two open problems in the domain of paraconsistency, in particular connected to algebraization of LFIs, by obtaining several LFIs weaker than C1, each of one is algebraizable in the standard Lindenbaum-Tarski's sense by a suitable variety of Boolean algebras extended with operators. This means that such LFIs satisfy the replacement property. The weakest LFI satisfying replacement presented here is called RmbC, which is obtained from the basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in addition a neighborhood semantics is defined for such systems. It is shown that RmbC can be defined within the minimal bimodal non-normal logic E+E defined by the fusion of the non-normal modal logic E with itself. Finally, the framework is extended to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be sound and complete w.r.t. BALFI semantics. (shrink)
This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the (...) validity of the principle of excluded middle in a paracomplete scenario. We introduce definitions of duality between inference rules and connectives that allow comparing rules and connectives that belong to different logics. Two formal systems are studied, the logics mbC and mbD, that display the duality between paraconsistency and paracompleteness as a duality between inference rules added to a common core– in the case studied here, this common core is classical positive propositional logic (CPL + ). The logics mbC and mbD are equipped with recovery operators that restore classical logic for, respectively, consistent and determined propositions. These two logics are then combined obtaining a pair of logics of formal inconsistency and undeterminedness (LFIUs), namely, mbCD and mbCDE. The logic mbCDE exhibits some nice duality properties. Besides, it is simultaneously paraconsistent and paracomplete, and able to recover the principles of excluded middle and explosion at once. The last sections offer an algebraic account for such logics by adapting the swap-structures semantics framework of the LFIs the LFUs. This semantics highlights some subtle aspects of these logics, and allows us to prove decidability by means of finite non-deterministic matrices. (shrink)
Several types of polarized partition relations are considered. In particular we deal with partitions defined on cartesian products of more than two factors. MSC: 03E05.
Jaakko Hintikka, in a series of talks in Brazil in 2008, defended that IF logic and paraconsistent logic are, in a sense, very similar. Having sketched the proposal of a new paraconsistent system, he maintains that several achievements of IF logic could be reproducible in paraconsistent logic. One of the major difficulties, left as a challenge, would be to formulate some truth conditions for this new paraconsistent first-order language in order to make IF logic and paraconsistent logic more inter-related. My (...) proposal is that this would demand an innovative game-theoretical semantic approach to paraconsistentism, but also that the syntax of the paraconsistent “Logics of Formal Inconsistency” can model the internal logic of Socratic elenchi. I aim to discuss these, and other points posed by Hintikka, as challenges and opportunities for paraconsistentism, paraconsistent logics and IF logics, as well as to raise some criticisms on Hintikka’s view about paraconsistency. (shrink)