Order:
Disambiguations
Walter Dean [9]Walter H. Dean [1]
  1.  29
    The Prehistory of the Subsystems of Second-Order Arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  77
    Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  3.  43
    Strict Finitism, Feasibility, and the Sorites.Walter Dean - 2018 - Review of Symbolic Logic 11 (2):295-346.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  26
    Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  49
    Montague’s Paradox, Informal Provability, and Explicit Modal Logic.Walter Dean - 2014 - Notre Dame Journal of Formal Logic 55 (2):157-196.
    The goal of this paper is to explore the significance of Montague’s paradox—that is, any arithmetical theory $T\supseteq Q$ over a language containing a predicate $P$ satisfying $P\rightarrow \varphi $ and $T\vdash \varphi \,\therefore\,T\vdash P$ is inconsistent—as a limitative result pertaining to the notions of formal, informal, and constructive provability, in their respective historical contexts. To this end, the paradox is reconstructed in a quantified extension $\mathcal {QLP}$ of Artemov’s logic of proofs. $\mathcal {QLP}$ contains both explicit modalities $t:\varphi $ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  11
    Bernays and the Completeness Theorem.Walter Dean - 2017 - Annals of the Japan Association for Philosophy of Science 25:45-55.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  23
    Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays and also how it was later adapted by Kreisel and Wang in order to obtain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  41
    The Paradox of the Knower Revisited.Walter Dean & Hidenori Kurokawa - 2014 - Annals of Pure and Applied Logic 165 (1):199-224.
    The Paradox of the Knower was originally presented by Kaplan and Montague [26] as a puzzle about the everyday notion of knowledge in the face of self-reference. The paradox shows that any theory extending Robinson arithmetic with a predicate K satisfying the factivity axiom K → A as well as a few other epistemically plausible principles is inconsistent. After surveying the background of the paradox, we will focus on a recent debate about the role of epistemic closure principles in the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation