7 found
Order:
Disambiguations
Warren Nichols [6]Warren D. Nichols [1]
  1.  23
    On Series of Ordinals and Combinatorics.James P. Jones, Hilbert Levitz & Warren D. Nichols - 1997 - Mathematical Logic Quarterly 43 (1):121-133.
    This paper deals mainly with generalizations of results in finitary combinatorics to infinite ordinals. It is well-known that for finite ordinals ∑bT<αβ is the number of 2-element subsets of an α-element set. It is shown here that for any well-ordered set of arbitrary infinite order type α, ∑bT<αβ is the ordinal of the set M of 2-element subsets, where M is ordered in some natural way. The result is then extended to evaluating the ordinal of the set of all n-element (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  12
    A Macro Program for the Primitive Recursive Functions.Hilbert Levitz, Warren Nichols & Robert F. Smith - 1991 - Mathematical Logic Quarterly 37 (8):121-124.
  3.  23
    A Macro Program for the Primitive Recursive Functions.Hilbert Levitz, Warren Nichols & Robert F. Smith - 1991 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 37 (8):121-124.
  4.  6
    A Natural Variant of Ackermann's Function.Hilbert Levitz & Warren Nichols - 1988 - Mathematical Logic Quarterly 34 (5):399-401.
  5.  26
    A Natural Variant of Ackermann's Function.Hilbert Levitz & Warren Nichols - 1988 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34 (5):399-401.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  1
    Eine Rekursive Universelle Funktion Für Die Primitiv‐Rekursiven Funktionen.Hilbert Levitz & Warren Nichols - 1987 - Mathematical Logic Quarterly 33 (6):527-535.
    No categories
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7.  19
    Eine Rekursive Universelle Funktion Für Die Primitiv-Rekursiven Funktionen.Hilbert Levitz & Warren Nichols - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (6):527-535.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark