## Works by William Chen

Order:
 William Chen Reed College
1. Tight Stationarity and Tree-Like Scales.William Chen - 2015 - Annals of Pure and Applied Logic 166 (10):1019-1036.

Export citation

Bookmark   1 citation
2. Some Results on Tight Stationarity, University of California, Los Angeles, USA, 2016. Supervised by Itay Neeman.William Chen - 2018 - Bulletin of Symbolic Logic 24 (2):198-199.
This paper investigates the principles □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{{\rm ta}}}_{\lambda,\delta}}$$\end{document}, weakenings of □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document} which allow δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document} many clubs at each level but require them to agree on a tail-end. First, we prove that □λ,<ωta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm {ta}}}_{\lambda,< \omega}}$$\end{document} implies □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document}. Then, (...)