The paper is a contribution to intuitionistic reverse mathematics. We introduce a formal system called Basic Intuitionistic MathematicsBIM, and then search for statements that are, over BIM, equivalent to Brouwer’s Fan Theorem or to its positive denial, Kleene’s Alternative to the Fan Theorem. The Fan Theorem is true under the intended intuitionistic interpretation and Kleene’s Alternative is true in the model of BIM consisting of the Turing-computable functions. The task of finding equivalents of Kleene’s Alternative is, intuitionistically, a nontrivial extension (...) of the task of finding equivalents of the Fan Theorem, although there is a certain symmetry in the arguments that we shall try to make transparent. We introduce closed-and-separable subsets of Baire space N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} and of the set R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document} of the real numbers. Such sets may be compact and also positively noncompact. The Fan Theorem is the statement that Cantor space C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}, or, equivalently, the unit interval [0, 1], is compact and Kleene’s Alternative is the statement that C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}, or, equivalently, [0, 1], is positively noncompact. The class of the compact closed-and-separable sets and also the class of the closed-and-separable sets that are positively noncompact are characterized in many different ways and a host of equivalents of both the Fan Theorem and Kleene’s Alternative is found. (shrink)
The author proved in his Ph.D. Thesis [W. Veldman, Investigations in intuitionistic hierarchy theory, Ph.D. Thesis, Katholieke Universiteit Nijmegen, 1981] that, in intuitionistic analysis, the positively Borel subsets of Baire space form a genuinely growing hierarchy: every level of the hierarchy contains sets that do not occur at any lower level. It follows from this result that there are natural examples of analytic and also of co-analytic sets that are not positively Borel. It turns out, however, that, in intuitionistic analysis, (...) one may give surprisingly different and, in some sense, much more simple examples of analytic and co-analytic sets that fail to be positively Borel. In the paper, two such examples are given. In proving them correct, one obtains new proofs of the Borel Hierarchy Theorem. Brouwer’s Continuity Principle plays a crucial role in arguments. (shrink)
In intuitionistic analysis, "Brouwer's Continuity Principle" implies, together with an "Axiom of Countable Choice", that the positively Borel sets form a genuinely growing hierarchy: every level of the hierarchy contains sets that do not occur at any lower level.
MartinoEnrico.* * Intuitionistic Proof Versus Classical Truth, The Role of Brouwer’s Creative Subject in Intuitionistic Mathematics. Logic, Methodology and the Unity of Science; 42. Springer, 2018. ISBN: 978-3-319-74356-1 ; 978-3-030-08971-9, 978-3-319-74357-8. Pp. xiii + 170.
In intuitionistic analysis, a subset of a Polish space like or is called positively Borel if and only if it is an open subset of the space or a closed subset of the space or the result of forming either the countable union or the countable intersection of an infinite sequence of (earlier constructed) positively Borel subsets of the space. The operation of taking the complement is absent from this inductive definition, and, in fact, the complement of a positively Borel (...) set is not always positively Borel itself (see Veldman, 2008a). The main result of Veldman (2008a) is that, assuming Brouwer's Continuity Principle and an Axiom of Countable Choice, one may prove that the hierarchy formed by the positively Borel sets is genuinely growing: every level of the hierarchy contains sets that do not occur at any lower level. The purpose of the present paper is a different one: we want to explore the truly remarkable fine structure of the hierarchy. Brouwer's Continuity Principle again is our main tool. A second axiom proposed by Brouwer, his Thesis on Bars is also used, but only incidentally. (shrink)
We establish constructive refinements of several well-known theorems in elementary model theory. The additive group of the real numbers may be embedded elementarily into the additive group of pairs of real numbers, constructively as well as classically.